Show simple item record

dc.contributor.authorPolk, William Daviden_US
dc.date.accessioned2014-03-14T20:19:54Z
dc.date.available2014-03-14T20:19:54Z
dc.date.issued2001-07-02en_US
dc.identifier.otheretd-12072001-140402en_US
dc.identifier.urihttp://hdl.handle.net/10919/29968
dc.description.abstractTwo novel classes of siloxane containing, organic-inorganic block copolymers were prepared using different synthetic approaches. The first copolymers were alternating poly(arylene ether phosphine oxide)-poly(dimethylsiloxane) systems, prepared via oligomeric silylamine-hydroxyl reactions. Secondly, segmented nylon 6,6-poly(dimethylsiloxane) block copolymers were synthesized via a non-aqueous adaptation of the "nylon 6,6 salt" hydrolytic polyamidization, using bis(aminopropyl) dimethylsiloxane oligomer as a co-reactant. Three series of "perfectly" alternating block copolymers were produced from well characterized hydroxyl-terminated poly(arylene ether phosphine oxide) and dimethylamine-terminated poly(dimethylsiloxane) oligomers, in order to investigate both block length and chemical composition effects. Copolymerization in chlorobenzene resulted in high molecular weight materials capable of forming optically clear, nanophase separated films, which displayed unusual morphologies and good mechanical strength. Thermal gravimetric analysis showed high thermo-oxidative stability and increasing char yield with increasing siloxane content. Additional thermal and mechanical investigations provided evidence of selective phase mixing, particularly at shorter block lengths. Surface analysis showed an enrichment of the siloxane blocks at the air-polymer interface in comparison to the bulk state. This behavior increased in proportion to the length of the parent siloxane oligomers. Evaluation of selected optical properties, e.g., refractive indices, revealed linear trends resulting in values of compositionally weighted averages. Conversely, a series of nylon 6,6-siloxane copolymers were produced from the polycondensation of preformed propylamine-terminated poly(dimethylsiloxane)s, solid nylon 6,6 salt and a corresponding amount of adipic acid to afford siloxane-amide semi-crystalline copolymers with siloxane content ranging from 10 to ~45 wt%. The characterization of high molecular weight and covalent siloxane-amide linkages was hindered by insolubility. For example, crystallinity of the nylon 6,6 precluded the use of common solution techniques, while the susceptibility of the siloxane blocks towards ionic redistribution prevented the use of strongly acidic solvents. However, development of a novel analytical technique using solid state 13C NMR and liquid-solid extraction provided evidence for the presence of covalent bonding between the dissimilar oligomer chains. Thermal gravimetric analysis of resultant copolymers revealed an increase in char yield with increasing siloxane content, a preliminary indicator of increased fire resistance, which was supported by subsequent qualitative Bunsen burner observations. Differential scanning calorimetry showed retention of the polyamide crystalline melt with levels of siloxane incorporation of up to 45 weight %. In conclusion, two novel classes of polydimethylsiloxane containing block copolymers have been successfully synthesized, despite the complications created as a result of the polar/non-polar interactions developed between a semi-inorganic polydimethylsiloxane and the hydrocarbon based polyarylene ethers and nylon 6,6.en_US
dc.publisherVirginia Techen_US
dc.relation.haspartpolk.pdfen_US
dc.rightsI hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Virginia Tech or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.en_US
dc.subjectBlock Copolymeren_US
dc.subjectPhenyl Phosphine Oxideen_US
dc.subjectFire Resistanceen_US
dc.subjectPolyarylene Etheren_US
dc.subject6en_US
dc.subjectOptical Materialsen_US
dc.subjectPolydimethylsiloxaneen_US
dc.subjectNylon 6en_US
dc.subjectNanoparticlesen_US
dc.subjectPolyamideen_US
dc.titlePolydimethylsiloxane Containing Block Copolymers: Synthesis and Characterization of Alternating Poly(Arylene Ether Phosphine Oxide)-B-Siloxane and Segmented Nylon 6,6 -B-Siloxane Copolymersen_US
dc.typeDissertationen_US
dc.contributor.departmentChemistryen_US
dc.description.degreePh. D.en_US
thesis.degree.namePh. D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineChemistryen_US
dc.contributor.committeechairMcGrath, James E.en_US
dc.contributor.committeememberRiffle, Judy S.en_US
dc.contributor.committeememberDeck, Paul A.en_US
dc.contributor.committeememberShultz, Allan R.en_US
dc.contributor.committeememberDillard, John G.en_US
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-12072001-140402/en_US
dc.date.sdate2001-12-07en_US
dc.date.rdate2002-12-10
dc.date.adate2001-12-10en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record