Show simple item record

dc.contributor.authorJeng, D. Isaacen_US

A mathematical model is developed for quantification of aquifer deformation due to ground-water withdrawal and, with some modifications, is potentially applicable to petroleum reservoirs. A porous medium saturated with water is conceptually treated in the model as a nonlinearly viscous fluid continuum. The model employs a new three-dimensional extension, made in this thesis, of Helm's poroviscosity as a constitutive law governing the stress-strain relation of material deformation and Gersevanov's generalization of Darcy's law for fluid flow in porous media. Relative to the classical linear poroelasticity, the proposed model provides a more realistic tool, yet with greater simplicity, in modeling and prediction of aquifer movement.

Based on laboratory consolidation tests conducted on clastic sedimentary materials, three phases of skeletal compaction are recognized. They are referred to as "instantaneous compression", "primary consolidation" and "secondary compression" according to Terzaghi and Biot's theory of poroelasticity. Among the three modes of consolidation, material behavior during the secondary compression phase has a nonlinear stress-strain relationship and is strongly time-dependent, exhibiting a phenomenon often known as "creep". In poroelasticity, the primary and secondary compressions have been conceptually considered as two separate physical processes that require two sets of material parameters to be evaluated. In contrast, the proposed poroviscosity model is a unified theory of time-dependent skeletal compression that realistically describes the physical phenomena of sediment compression as one single transient process.

As a general model, two sets of governing equations are formulated for Cartesian and cylindrical coordinates, respectively, and allow for mechanical anisotropy and the assumption of principal hydraulic directions. Further simplifications of the governing equations are formulated by assuming mechanical isotropy, irrotational deformation and mechanical axisymmetry, which are more suitable for field applications. Incremental forms of the governing equations are also provided.

dc.publisherVirginia Techen_US
dc.rightsI hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Virginia Tech or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.en_US
dc.subjectland subsidenceen_US
dc.subjectaquifer mechanicsen_US
dc.subjectgroundwater hydrologyen_US
dc.subjectnon-Newtonian fluiden_US
dc.titleA Three-dimensional Model of Poroviscous Aquifer Deformationen_US
dc.description.degreePh. D.en_US D.en_US Polytechnic Institute and State Universityen_US
dc.contributor.committeechairBurbey, Thomas J.en_US
dc.contributor.committeememberJohn A. Holeen_US
dc.contributor.committeememberDonald C. Helmen_US
dc.contributor.committeememberMark A. Widdowsonen_US
dc.contributor.committeememberMadeline E. Schreiberen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record