Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analysis and Design for a High Power Density Three-Phase AC Converter Using SiC Devices

    Thumbnail
    View/Open
    dissertation_Rixin_final.pdf (3.658Mb)
    Downloads: 1537
    Date
    2008-12-10
    Author
    Lai, Rixin
    Metadata
    Show full item record
    Abstract
    The development of high power density three-phase ac converter has been a hot topic in power electronics area due to the increasing needs in applications like electric vehicle, aircraft and aerospace, where light weight and/or low volume is usually a must. Many challenges exist due to the complicated correlations in a three-phase power converter system. In addition, with the emerging SiC device technology the operating frequency of the converter can be potentially pushed to the range from tens of kHz to hundreds of kHz at higher voltage and higher power conditions. The extended frequency range brings opportunities to further improve the power density of the converter. Technologies based on existing devices need to be revisited. In this dissertation, a systematic methodology to analyze and design the high power density three-phase ac converter is developed. All the key factors of the converter design are explored from the high density standpoint. Firstly, the criteria for the passive filter selection are derived and the relationship between the switching frequency and the size of the EMI filter is investigated. A function integration concept as well as the physical design approach is proposed. Secondly, a topology evaluation method is presented, which provides the insight into the relationships between the system constraints, operating conditions and design variables. Four topologies are then compared with the proposed approach culminating with a favored topology under the given conditions. Thirdly, a novel average model is developed for the selected topology, and used for devising a carrier-based control approach with simple calculation and good regulation performance. Fourthly, the converter failure mode operation and corresponding protection approaches are discussed and developed. Finally, a 10 kW three-phase ac/ac converter is built with the SiC devices. All the key concepts and ideas developed in this work are implemented in this hardware system and then verified by the experimental results.
    URI
    http://hdl.handle.net/10919/30155
    Collections
    • Doctoral Dissertations [14973]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us