Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Damage Development in Static and Dynamic Deformations of Fiber-Reinforced Composite Plates

    Thumbnail
    View/Open
    nhassan.pdf (3.065Mb)
    Downloads: 725
    Date
    2005-12-13
    Author
    Hassan, Noha Mohamed
    Metadata
    Show full item record
    Abstract
    A three-dimensional finite element code to analyze coupled thermomechanical deformations of composites has been developed. It incorporates geometric nonlinearities, delamination between adjoining layers, and damage due to fiber breakage, fiber/matrix debonding, and matrix cracking. The three damage modes are modeled using the theory of internal variables and the delamination by postulating a failure envelope in terms of the transverse stresses; the damage degrades elastic moduli. The delamination of adjoining layers is simulated by the nodal release technique. Coupled nonlinear partial differential equations governing deformations of a composite, and the pertinent initial and boundary conditions are first reduced to coupled ordinary differential equations (ODEs) by the Galerkin method. These are integrated with respect to time with the Livermore solver for ODEs. After each time step, the damage in an element is computed, and material properties modified. The code has been used to analyze several static and transient problems; computed results have been found to compare well with the corresponding test results. The effect of various factors such as the fiber orientation, ply stacking sequence, and laminate thickness on composite's resistance to shock loads induced by underwater explosions has been delineated.
    URI
    http://hdl.handle.net/10919/30171
    Collections
    • Doctoral Dissertations [16358]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us