Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Quantitative Stratigraphic Inversion

    Thumbnail
    View/Open
    ArvindSharmaThesis.pdf (14.54Mb)
    Downloads: 628
    Date
    2006-12-06
    Author
    Sharma, Arvind Kumar
    Metadata
    Show full item record
    Abstract
    We develop a methodology for systematic inversion of quantitative stratigraphic models. Quantitative stratigraphic modeling predicts stratigraphy using numerical simulations of geologic processes. Stratigraphic inversion methodically searches the parameter space in order to detect models which best represent the observed stratigraphy. Model parameters include sea-level change, tectonic subsidence, sediment input rate, and transport coefficients. We successfully performed a fully automated process based stratigraphic inversion of a geologically complex synthetic model. Several one and two parameter inversions were used to investigate the coupling of process parameters. Source location and transport coefficient below base level indicated significant coupling, while the rest of the parameters showed only minimal coupling. The influence of different observable data on the inversion was also tested. The inversion results using misfit based on sparse, but time dependent sample points proved to be better than the misfit based on the final stratigraphy only, even when sampled densely. We tested several inversion schemes on the topography dataset obtained from the eXperimental EarthScape facility simulation. The clustering of model parameters in most of the inversion experiments showed the likelihood of obtaining a reasonable number of compatible models. We also observed the need for several different diffusion-coefficient parameterizations to emulate different erosional and depositional processes. The excellent result of the piecewise inversion, which used different parameterizations for different time intervals, demonstrate the need for development or incorporation of time-variant parameterizations of the diffusion coefficients. We also present new methods for applying boundary condition on simulation of diffusion processes using the finite-difference method. It is based on the straightforward idea that solutions at the boundaries are smooth. The new scheme achieves high accuracy when the initial conditions are non vanishing at the boundaries, a case which is poorly handled by previous methods. Along with the ease in implementation, the new method does not require any additional computation or memory.
    URI
    http://hdl.handle.net/10919/30172
    Collections
    • Doctoral Dissertations [14916]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us