Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Wormhole Run-Time Reconfiguration: Conceptualization and VLSI Design of a High Performance Computing System

    Thumbnail
    View/Open
    etd.pdf (3.770Mb)
    Downloads: 338
    Date
    1997-01-23
    Author
    Bittner, Ray Albert Jr.
    Metadata
    Show full item record
    Abstract
    In the past, various approaches to the high performance numerical computing problem have been explored. Recently, researchers have begun to explore the possibilities of using Field Programmable Gate Arrays (FPGAs) to solve numerically intensive problems. FPGAs offer the possibility of customization to any given application, while not sacrificing applicability to a wide problem domain. Further, the implementation of data flow graphs directly in silicon makes FPGAs very attractive for these types of problems. Unfortunately, current FPGAs suffer from a number of inadequacies with respect to the task. They have lower transistor densities than ASIC solutions, and hence less potential computational power per unit area. Routing overhead generally makes an FPGA solution slower than an ASIC design. Bit-oriented computational units make them unnecessarily inefficient for implementing tasks that are generally word-oriented. And finally, in large volumes, FPGAs tend to be more expensive per unit due to their lower transistor density. To combat these problems, researchers are now exploiting the unique advantage that FPGAs exhibit over ASICs: reconfigurability. By customizing the FPGA to the task at hand, as the application executes, it is hoped that the cost-performance product of an FPGA system can be shown to be a better solution than a system implemented by a collection of custom ASICs. Such a system is called a Configurable Computing Machine (CCM). Many aspects of the design of the FPGAs available today hinder the exploration of this field. This thesis addresses many of these problems and presents the embodiment of those solutions in the Colt CCM. By offering word grain reconfiguration and the ability to partially reconfigure at computational element resolution, the Colt can offer higher effective utilization over traditional FPGAs. Further, the majority of the pins of the Colt can be used for both normal I/O and for chip reconfiguration. This provides higher reconfiguration bandwidth contrasted with the low percentage of pins used for reconfiguration of FPGAs. Finally, Colt uses a distributed reconfiguration mechanism called Wormhole Run-Time Reconfiguration (RTR) that allows multiple data ports to simultaneously program different sections of the chip independently. Used as the primary example of Wormhole RTR in the patent application, Colt is the first system to employ this computing paradigm.
    URI
    http://hdl.handle.net/10919/30499
    Collections
    • Doctoral Dissertations [16366]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us