Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dynamics and Control for Vibration Isolation Design

    Thumbnail
    View/Open
    etd.pdf (4.603Mb)
    Downloads: 979
    etd_2011.pdf (5.784Mb)
    Downloads: 2457
    Date
    1997-04-28
    Author
    Sciulli, Dino
    Metadata
    Show full item record
    Abstract
    The single-degree-of-freedom (SDOF) system is the most widely used model for vibration isolation systems. The SDOF system is a simple but worthy model because it quantifies many results of an isolation system. For instance, a SDOF model predicts that the high frequency transmissibility increases when the isolator has passive damping although this does not occur for an isolator implementing active damping. A severe limitation of this system is that it cannot be used when the base and/or equipment are flexible. System flexibility has been considered in previous literature but the flexibility has always been approximated which leads to truncation errors. The analysis used in this work is more sophisticated in that it can model the system flexibility without the use of any approximations. Therefore, the true effects of system flexibility can be analyzed analytically. Current literature has not fully explored the choice of mount frequency or actuator placement for flexible systems either. It is commonly suggested that isolators should be designed with a low-frequency mount. That is, the isolator frequency should be much lower than any of the system frequencies. It is shown that these isolators tend to perform best in an overall sense; however, mount frequencies designed between system modes tend to have a coupling effect. That is, the lower frequencies have such a strong interaction between each other that when isolator damping is present, multiple system modes are attenuated. Also, when the base and equipment are flexible, isolator placement becomes a critical issue. For low-frequency mount designs, the first natural frequency can shift as much as 15.6% for various isolator placements. For a mid-frequency mount design, the shift of the first three modes can be as high as 34.9%, 26.6% and 11.3%, respectively, for varying isolator placements. NOTE: (03/2011) An updated copy of this ETD was added after there were patron reports of problems with the file.
    URI
    http://hdl.handle.net/10919/30511
    Collections
    • Doctoral Dissertations [15776]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us