Show simple item record

dc.contributor.authorKaticha, Samer Wehbeen_US
dc.date.accessioned2014-03-14T20:30:19Z
dc.date.available2014-03-14T20:30:19Z
dc.date.issued2003-11-18en_US
dc.identifier.otheretd-01092004-152728en_US
dc.identifier.urihttp://hdl.handle.net/10919/30866
dc.description.abstractResilient moduli of different surface mixes placed at the Virginia Smart Road were determined. Testing was performed on Field cores (F/F) and laboratory-compacted plant mixed (F/L), laboratory mixed and compacted per field design (L/L), and laboratory designed, mixed, and compacted (D/L) specimens. The applied load was chosen to induce a strain ranging between 150 and 500 microstrains. Two sizes of laboratory compacted specimens (100-mm in diameter and 62.5-mm-thick and 150-mm in diameter and 76.5-mm-thick) were tested to investigate the effect of specimen size on the resilient modulus. At 5oC, the measured resilient moduli for both specimen sizes were similar. However, the specimen size has an effect on the measured resilient modulus at 25 and 40oC, with larger specimens having lower resilient modulus. At 5oC, HMA behaves as an elastic material; correcting for the specimen size using Roque and Buttlarâ s correction factors is applicable. However, at higher temperatures, HMA behavior becomes relatively more viscous. Hence, erroneous resilient modulus values could result when elastic analysis is used. In addition, due to difference in relative thickness between the 100- and 150-mm diameter specimens, the viscous flow at high temperature may be different. In general, both specimen sizes showed the same variation in measurements. Resilient modulus results obtained from F/L specimens were consistently higher than those obtained from F/F specimens. This could be due to the difference in the volumetric properties of both mixes; where F/F specimens had greater air voids content than F/L specimens. A compaction shift factor of 1.45 to 1.50 between the F/F and F/L specimens was introduced. The load was found to have no effect on resilient modulus under the conditions investigated. However, the resilient modulus was affected by the load pulse duration. The testing was performed at a 0.1s and 0.03s load pulses. The resilient modulus increased with the decrease of the load pulse duration at temperatures of 25oC and 40oC, while it increased at 5oC. This could be due to the difference in specimen conditioning performed at the two different load pulses. Finally, a model to predict HMA resilient modulus from HMA volumetric properties was developed. The model was tested for its fitting as well as predicting capabilities. The average variability between the measured and predicted resilient moduli was comparable to the average variability within the measured resilient moduli.en_US
dc.publisherVirginia Techen_US
dc.relation.haspartthesis.pdfen_US
dc.rightsI hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Virginia Tech or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.en_US
dc.subjecthot-mix asphalten_US
dc.subjecttemperatureen_US
dc.subjectcompactionen_US
dc.subjectresilient modulusen_US
dc.titleDevelopment of Laboratory to Field Shift Factors for Hot-Mix Asphalt Resilient Modulusen_US
dc.typeThesisen_US
dc.contributor.departmentCivil Engineeringen_US
dc.description.degreeMaster of Scienceen_US
thesis.degree.nameMaster of Scienceen_US
thesis.degree.levelmastersen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineCivil Engineeringen_US
dc.contributor.committeechairAl-Qadi, Imadeddin L.en_US
dc.contributor.committeememberLoulizi, Amaraen_US
dc.contributor.committeememberFlintsch, Gerardo W.en_US
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-01092004-152728/en_US
dc.date.sdate2004-01-09en_US
dc.date.rdate2005-01-28
dc.date.adate2004-01-28en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record