Show simple item record

dc.contributor.authorGrossman, Peter Michaelen_US
dc.date.accessioned2014-03-14T20:30:51Z
dc.date.available2014-03-14T20:30:51Z
dc.date.issued2007-01-19en_US
dc.identifier.otheretd-01172007-222359en_US
dc.identifier.urihttp://hdl.handle.net/10919/30974
dc.description.abstractAn experimental investigation of a flush-wall, diamond-shaped injector was conducted in the Virginia Tech supersonic wind tunnel. The diamond injector was elongated in the streamwise direction and is aimed downstream angled up at 60° from the wall. Test conditions involved sonic injection of helium heated to approximately 313 K into a nominal Mach 4.0 crossstream airflow. These conditions are typical of a scramjet engine for a Mach 10 flight, and heated helium was used to safely simulate hydrogen fuel. The injector was tested at two different injectant conditions. First, it was investigated at a baseline mass flow rate of 3.4 g/s corresponding to an effective radius of 3.54 mm and a jet-to-freestream momentum flux ratio of 1.04. Second, a lower mass flow rate of 1.5 g/s corresponding to an effective ratio of 2.35 mm and a jet-to-freestream momentum flux ratio of 0.49 was studied. The diamond injector was tested both aligned with the freestream and at a 15° yaw angle for the baseline mass flow rate and aligned with the freestream at the lower mass flow rate. For comparison, round injectors angled up at 30° from the wall were also examined at both flow rates. A smaller round injector was used at the lower mass flow rate such that the jet-to-freestream momentum flux ratio was 1.75 for both cases. A concentration sampling probe and gas analyzer were used to determine the local helium concentration, while Pitot, cone-static and total temperature probes were used to determine the flow properties.

The results of the investigation can be summarized as follows. For the baseline case, the aligned diamond injector penetrated 44% higher into the crossflow than did the round injector. The addition of yaw angle increased the crossflow penetration to 53% higher than the round injector. The aligned diamond injector produced a 34% wider jet than the round injector, while the addition of yaw angle somewhat reduced this widening effect to 26% wider than the round injector. The aligned and yawed diamond injectors exhibited 10% and 15% lower mixing efficiency than the round injector, respectively. The total pressure loss parameter of the aligned diamond was 22% lower than the round injector, while the addition of yaw angle improved the total pressure loss parameter to 34% lower than the round injector. For the lower mass flow (and momentum flux ratio) case, the diamond injector demonstrated 52% higher penetration and a 39% wider plume than the round injector. The mixing efficiency was nearly identical between the two injectors with just a 4% lower mixing efficiency for the diamond injector. The total pressure loss parameter of the diamond injector was 32% lower than round injector. These results confirm the conclusions of earlier, lower free stream Mach number and higher molecular weight injectant, studies that a slender diamond injector provides significant benefits for crossflow penetration and lower total pressure losses.

en_US
dc.publisherVirginia Techen_US
dc.relation.haspartGrossman_Peter_Thesis.pdfen_US
dc.rightsI hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Virginia Tech or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.en_US
dc.subjectScramjetsen_US
dc.subjectHypersonicen_US
dc.subjectSupersonicen_US
dc.subjectMixingen_US
dc.subjectPenetrationen_US
dc.subjectHelium Injectionen_US
dc.titleExperimental Investigation of a Flush-Walled, Diamond-Shaped Fuel Injector for High Mach Number Scramjetsen_US
dc.typeThesisen_US
dc.contributor.departmentAerospace and Ocean Engineeringen_US
dc.description.degreeMaster of Scienceen_US
thesis.degree.nameMaster of Scienceen_US
thesis.degree.levelmastersen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineAerospace and Ocean Engineeringen_US
dc.contributor.committeechairSchetz, Joseph A.en_US
dc.contributor.committeememberHall, Christopher D.en_US
dc.contributor.committeememberO'Brien, Walter F. Jr.en_US
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-01172007-222359/en_US
dc.date.sdate2007-01-17en_US
dc.date.rdate2010-10-27
dc.date.adate2007-02-12en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record