Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cryomilling of Aluminum-based and Magnesium-based Metal Powders

    Thumbnail
    View/Open
    AdamMaisanoMSThesis.pdf (1.956Mb)
    Downloads: 325
    Date
    2006-01-13
    Author
    Maisano, Adam J.
    Metadata
    Show full item record
    Abstract
    Ball milling has been shown to produce nanostructures in metal powders through severe repetitive deformation. Ball milling at cryogenic temperatures (cryomilling) is more effective in this capacity due to the low temperature by slowing recovery and minimizing diffusion distances between different components. Nanostructured metals are of interest because of their unique physical and mechanical properties. The result of cryomilling is powder consisting of crystallites on the order of 30 â 50 nm. In order to characterize the properties of this material, it is often necessary to consolidate the powder, which is often difficult without causing significant grain growth. In this work, aluminum-rich and magnesium-rich alloys of varying composition are produced by cryomilling and characterized by x-ray diffraction. A novel consolidation process called high shear powder consolidation (HSPC) is used to densify as-received and as-milled powders with minimal growth. The construction of a cryomill, along with a modification for improving process yield, has provided a platform for the study of nanocrystalline metals. It has been shown that bulk nanocrystalline materials are attainable and that alloy composition influences mechanical properties.
    URI
    http://hdl.handle.net/10919/31045
    Collections
    • Masters Theses [19644]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us