Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Approximations and Object-Oriented Implementation for a Parabolic Partial Differential Equation

    Thumbnail
    View/Open
    elect.pdf (3.678Mb)
    Downloads: 95
    Date
    1999-01-27
    Author
    Camphouse, Russell C.
    Metadata
    Show full item record
    Abstract
    This work is a numerical study of the 2-D heat equation with Dirichlet boundary conditions over a polygonal domain. The motivation for this study is a chemical vapor deposition (CVD) reactor in which a substrate is heated while being exposed to a gas containing precursor molecules. The interaction between the gas and the substrate results in the deposition of a compound thin film on the substrate. Two different numerical approximations are implemented to produce numerical solutions describing the conduction of thermal energy in the reactor. The first method used is a Crank-Nicholson finite difference technique which tranforms the 2-D heat equation into an algebraic system of equations. For the second method, a semi-discrete method is used which transforms the partial differential equation into a system of ordinary differential equations. The goal of this work is to investigate the influence of boundary conditions, domain geometry, and initial condition on thermal conduction throughout the reactor. Once insight is gained with respect to the aforementioned conditions, optimal design and control can be investigated. This work represents a first step in our long term goal of developing optimal design and control of such CVD systems. This work has been funded through Partnerships in Research Excellence and Transition (PRET) grant number F49620-96-1-0329.
    URI
    http://hdl.handle.net/10919/31104
    Collections
    • Masters Theses [20942]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us