Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The VT1 Shape Memory Alloy Heat Engine Design

    Thumbnail
    View/Open
    ETD.pdf (1.741Mb)
    Downloads: 2978
    Date
    2001-01-29
    Author
    Wakjira, Jillcha Fekadu
    Metadata
    Show full item record
    Abstract
    The invention of shape memory alloys spurred a period of intense interest in the area of heat engines in the late 70's and early 80's. It was believed that these engines could use heat from low temperature sources such as solar heated water, geothermal hot water and rejected heat from conventional engines as a significant source of power. The interest has since dwindled, largely because small prototype devices developed in the laboratory could not be scaled up to produce significant power. It is believed that the scaled-up designs failed because they were dependent on friction as the driving mechanism, which led to large energy losses and slip. This thesis proposes a new chain and sprocket driving mechanism that is independent of friction and should therefore allow for large-scale power generation. This thesis begins by presenting properties and applications of shape memory alloys. The proposed design is then described in detail, followed by a review of the evolution that led to the final design. A brief chapter on thermodynamic modeling and a summary chapter suggesting improvements on the current design follow.
    URI
    http://hdl.handle.net/10919/31196
    Collections
    • Masters Theses [19683]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us