Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Two-Dimensional Analysis of Water-Filled Geomembrane Tubes Used as Temporary Flood-Fighting Devices

    Thumbnail
    View/Open
    Tung_thesis1.pdf (3.665Mb)
    Downloads: 1384
    Date
    2001-02-08
    Author
    Huong, Tung Chun
    Metadata
    Show full item record
    Abstract
    A water-filled geomembrane tube is considered for the purpose of temporary flood protection. With proper design, this tube can be a cheap and efficient breakwater, temporary levee, or cofferdam. This thesis considers a single tube resting on clay and sand foundations. A finite difference program, FLAC, is used in the numerical analyses. The tube is assumed to be infinitely long, and it is modeled two-dimensionally. Beam elements are used to model the tube. The tube is inflated with water. The hydrostatic pressure in the tube is converted to point loads and applied at the beam nodes in the direction perpendicular to the chord connecting two adjacent nodes. Two of FLACâ s built-in soil models are used: elastic and Mohr-Coulomb. The Mohr-Coulomb model is used in all the cases except the preliminary analyses, in which the elastic soil model is used. The Mohr-Coulomb soil model is able to model the soilâ s nonlinear stress-strain and path-dependent deformation behavior. A tube without external water is placed on clay with various shear strengths to study how the clay consistency affects the height and the stresses in the tube. A tube with external water on one side is placed on medium dense sand. A wooden block is placed on the side opposite the floodwater. Three types of block geometry and two sizes are studied. The floodwater level is increased until the system fails. Three failure modes, rolling, sliding, and piping, are studied. The effect of pore pressure on these failure modes is examined. The influence of a filter placed under part of the tube and block is also investigated. The tubeâ s tensile forces, shear forces, moments, and settlements are included. Soil stresses and pore pressures at the soil-tube interfaces are computed. The cross-section of the tube at various external water levels, and the pore pressures in the soil, are calculated. These results are compared with experimental results that were obtained by graduate students in geotechnical engineering at Virginia Tech.
    URI
    http://hdl.handle.net/10919/31308
    Collections
    • Masters Theses [19615]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us