Response of Isotropic and Laminated Plates to Close Proximity Blast Loads

Files
TR Number
Date
2000-02-15
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

The transient response of various plate structures subject to blast loads is analyzed. In particular, simply supported isotropic and laminated composite plates are modeled using the commercial finite element code NASTRAN and the method of modal superposition. Both analysis procedures are used to quantify the linear transient response of such plates subject to uniform and patch blast loads. Furthermore, NASTRAN is used to study the nonlinear response of plates subject to close proximity explosions. Also considered here is the case for which a blast loaded plate impacts another closely neighboring plate. The NASTRAN solution used here accounts for nonlinearities due to large plate deflections, plasticity, and plate-to-plate contact.

Many studies are currently available in which the blast load is considered to be spatially uniform across the plate; with a temporal distribution described by step, N-pulse, or Friedlander equations. The novel aspect considered here is the case for which the blast pressure is due to a close proximity explosion, and it is therefore taken to be both spatially and temporally varying. A FORTRAN program is described which automates the application of an arbitrary blast load to a generic finite element mesh. The results presented here are a collection of analyses performed for a variety of parameters important to the dynamic response of blast loaded contacting plates. Conclusions are drawn concerning the influence of the various parameters on the nature of the plate response and the quality of the solution.

Description
Keywords
composite, contact, Finite element method, nonlinear, blast load
Citation
Collections