Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Impact of Webpage Access on the Design of Single-Chip Heterogeneous Multiprocessors

    Thumbnail
    View/Open
    msomers_thesis_etd_mod.pdf (1.965Mb)
    Downloads: 253
    Date
    2007-04-27
    Author
    Somers, Marc Steven
    Metadata
    Show full item record
    Abstract
    Mobile devices are currently designed similar to embedded systems where performance is derived from a specification that allows the device to interact in a periodic manner with the environment. However, as mobile devices increasingly interact with the Internet they exhibit a different style of computing that does not fit the embedded system model. At the same time, a mobile device designer needs to consider many different issues such as the number and types of processors, scheduling strategies, applications, power consumption, and dimensions of the device, which increase the total number of design decisions at an alarming rate. This research shows that by using a more realistic model of mobile devices using webpage-based benchmarks, customization can allow specialized architectures to improve performance up to 70 percent over a homogeneous multiprocessor composed of general purpose processors and 25 percent additional improvement over the next best architecture when individual user preferences were also considered. Webpage access, to include user profiling for individual utilization, is clearly a significant factor in the design of mobile devices — and thus should be included in future benchmarks based upon webpage content and webpage access patterns. When new evaluation techniques are developed, new design strategies can be discovered and employed.
    URI
    http://hdl.handle.net/10919/32107
    Collections
    • Masters Theses [20942]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us