Show simple item record

dc.contributor.authorHafsi, Amineen_US
dc.date.accessioned2014-03-14T20:35:20Z
dc.date.available2014-03-14T20:35:20Z
dc.date.issued2008-04-23en_US
dc.identifier.otheretd-05062008-122931en_US
dc.identifier.urihttp://hdl.handle.net/10919/32264
dc.description.abstractPermeable reactive barrier (PRB) technology is increasingly considered for in situ treatment of contaminated groundwater; however, current design formulas for PRBs are limited and do not properly account for all major physical and attenuation processes driving remediation. This study focused on developing a simple methodology to design PRBs that is easy to implement while improving accuracy and being more conservative than the available design methodologies. An empirical design equation and a simple analytical design equation were obtained to calculate the thickness of a PRB capable of degrading a contaminant from a source contaminant concentration to a maximum contaminant level at a Point of compliance . Both equations integrate the fundamental components that drive the natural attenuation process of the aquifer and the reactive capacity of the PRB.The empirical design equation was derived from a dataset of random hypothetical cases that used the solutions of the PRB conceptual model (Solution I). The analytical design equation was derived from particular solutions of the model (Solution II) which the study showed fit the complex solutions of the model well. Using the hypothetical cases, the analytical equation has shown that it gives an estimated thickness of the PRB just 15 % lower or higher than the real thickness of the PRB 95 percent of the time. To calculate the design thickness of a PRB, Natural attenuation capacity of the aquifer can be estimated from the observed contaminant concentration changes along aquifer flowpaths prior to the installation of a PRB. Bench-scale or pilot testing can provide good estimates of the required residence times ( Gavaskar et al. 2000) , which will provide the reactive capacity of the PRB needed for the calculation. The results of this study suggest also that the installation location downgradient from the source of contaminant is flexible. If a PRB is installed in two different locations, it will achieve the same remediation goals. This important finding gives engineers and scientists the choice to adjust the location of their PRBs so that the overall project can be the most feasible and cost effective.en_US
dc.publisherVirginia Techen_US
dc.relation.haspartAmine_Hafsi_MS_Thesis.pdfen_US
dc.rightsI hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Virginia Tech or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.en_US
dc.subjectnatural attenuationen_US
dc.subjectpermeable reactive barriersen_US
dc.subjectgroundwater remediationen_US
dc.titleDesign Methodology for Permeable Reactive Barriers Combined With Monitored Natural Attenuationen_US
dc.typeThesisen_US
dc.contributor.departmentCivil Engineeringen_US
dc.description.degreeMaster of Scienceen_US
thesis.degree.nameMaster of Scienceen_US
thesis.degree.levelmastersen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineCivil Engineeringen_US
dc.contributor.committeechairWiddowson, Mark A.en_US
dc.contributor.committeememberFilz, George M.en_US
dc.contributor.committeememberLittle, John C.en_US
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-05062008-122931/en_US
dc.date.sdate2008-05-06en_US
dc.date.rdate2011-02-09
dc.date.adate2008-06-06en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record