Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parameter Identifiability and Estimation in Gene and Protein Interaction Networks

    Thumbnail
    View/Open
    RShelton_Thesis_Final.pdf (1.337Mb)
    Downloads: 119
    Date
    2008-04-30
    Author
    Shelton, Rebecca Kay
    Metadata
    Show full item record
    Abstract
    The collection of biological data has been limited by instrumentation, the complexity of the systems themselves, and even the ability of graduate students to stay awake and record the data. However, increasing measurement capabilities and decreasing costs may soon enable the collection of reasonably sampled time course data characterizing biological systems, though in general only a subset of the systemâ s species would be measured. This increase in data volume requires a corresponding increase in the use and interpretation of such data, specifically in the development of system identification techniques to identify parameter sets in proposed models. In this paper, we present the results of identifiability analysis on a small test system, including the identifiability of parameters with respect to different measurements (proteins and mRNA), and propose a working definition for â biologically meaningful estimationâ . We also analyze the correlations between parameters, and use this analysis to consider effective approaches to determining parameters with biological meaning. In addition, we look at other methods for determining relationships between parameters and their possible significance. Finally, we present potential biologically meaningful parameter groupings from the test system and present the results of our attempt to estimate the value of select groupings.
    URI
    http://hdl.handle.net/10919/32702
    Collections
    • Masters Theses [18654]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us