Show simple item record

dc.contributor.authorJacobson, Jessicaen_US
dc.date.accessioned2014-03-14T20:36:47Z
dc.date.available2014-03-14T20:36:47Z
dc.date.issued2007-05-02en_US
dc.identifier.otheretd-05142007-111536en_US
dc.identifier.urihttp://hdl.handle.net/10919/32753
dc.description.abstractThe use of counter-rotating propellers is often desirable for aerospace and ocean engineering applications. Counter-rotating propellers offer higher peak efficiencies, better off-design performance, and roll control capabilities. But counter-rotating propeller matching is a difficult and complex procedure. Although much research has been done on the design of optimal counter-rotating propeller sets, there has been less focus on predicting the performance of unmatched counter-rotating sets. In this study, it was desired to use off-the-shelf marine propellers to make a counter-rotating pair for a high speed autonomous underwater vehicle (AUV). Counter-rotating propellers were needed to provide roll control for the AUV. Pre-existing counter-rotating propeller design methods were not applicable because they all require inputs of complex propeller blade geometries. These geometries are rarely known for off-the-shelf propellers.

This study proposes a new method for predicting the counter-rotating performance of unmatched propeller sets. It is suggested here that propeller performance curves can be used to predict counter-rotating thrust and torque performance.

Propeller performance tests were run in the Virginia Tech Water Tunnel for a variety of small, off-the shelf propellers. The collected data was used to generate the propeller performance curves. The propellers were then paired up and tested as counter-rotating sets. A momentum theory based model was formulated that predicted counter-rotating performance using the propeller performance data. The counter-rotating data was used to determine the effectiveness of the method.

A solution was found that successfully predicted the counter-rotating performance of all of the tested propeller sets using six interaction coefficients. The optimal values of these coefficients were used to write two counter-rotating performance prediction programs. The first program takes the forward and aft RPMs and the flow speed as inputs, and predicts the generated thrust and torque. The second program takes the flow speed and the desired thrust as inputs and calculates the forward and aft RPM values that will generate the desired thrust while producing zero torque. The second program was used to determine the optimal counter-rotating set for the HSAUV.

en_US
dc.publisherVirginia Techen_US
dc.relation.haspartJacobsonMastersThesis.pdfen_US
dc.rightsI hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Virginia Tech or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.en_US
dc.subjectpropelleren_US
dc.subjectcounter-rotatingen_US
dc.subjectAUVen_US
dc.titleUsing Single Propeller Performance Data to Predict Counter-Rotating Propeller Performance for a High Speed Autonomous Underwater Vehicleen_US
dc.typeThesisen_US
dc.contributor.departmentAerospace and Ocean Engineeringen_US
dc.description.degreeMaster of Scienceen_US
thesis.degree.nameMaster of Scienceen_US
thesis.degree.levelmastersen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineAerospace and Ocean Engineeringen_US
dc.contributor.committeechairNeu, Wayne L.en_US
dc.contributor.committeememberWoolsey, Craig A.en_US
dc.contributor.committeememberStilwell, Daniel J.en_US
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-05142007-111536/en_US
dc.date.sdate2007-05-14en_US
dc.date.rdate2007-06-12
dc.date.adate2007-06-12en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record