Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ozone Decomposition and Acetone Oxidation on Manganese Oxide Catalysts

    Thumbnail
    View/Open
    Title_Page_corrected.pdf (14.33Kb)
    Downloads: 25
    Abstract.pdf (21.60Kb)
    Downloads: 28
    Acknowledgements.pdf (15.12Kb)
    Downloads: 30
    Table_of_Contents.pdf (52.14Kb)
    Downloads: 43
    Chapter1.pdf (90.21Kb)
    Downloads: 46
    Chapter2_corrected.pdf (513.0Kb)
    Downloads: 336
    Chapter3_corrected.pdf (558.1Kb)
    Downloads: 57
    Chapter4.pdf (22.79Kb)
    Downloads: 57
    Vita.pdf (11.72Kb)
    Downloads: 20
    Date
    2005-05-11
    Author
    Xi, Yan
    Metadata
    Show full item record
    Abstract
    This thesis describes the preparation and characterization of manganese oxide catalysts and their application in the oxidation of acetone, a typical volatile organic compound (VOC), and ozone decomposition. This topic is of great value because of environmental concerns of the elimination of the harmful VOCs and ozone. Manganese oxide was chosen because it is a well-known complete oxidation catalyst for VOCs and also an active catalyst for ozone decomposition. Two cases of studies were carried out in this work. The first study involved the oxidation of acetone using ozone on silica- and alumina-supported manganese oxide catalysts deposited on aluminum oxide foam substrates. The characteristics of the catalysts were determined through various techniques, including x-ray diffraction (XRD), x-ray absorption spectroscopy (XAS), Brunauer-Emmett-Teller (BET) surface area analysis, temperature-programmed reduction (TPR), and oxygen chemisorption. The use of these techniques allowed better understanding of the nature of the catalysts. Activity tests were carried out in the acetone oxidation reaction and it was found that the usage of ozone substantially reduced the oxidation temperature. Steady-state in situ Raman spectroscopy was also carried out to better understand the mechanism of the acetone oxidation reaction using ozone. The second study involved an investigation of structural and electronic properties of manganese centers of the MnOx/SiO2 and MnOx/Al2O3 catalysts during the ozone decomposition reaction using in situ x-ray absorption spectroscopy (XAS). The number of surface active sites was again determined through TPR and oxygen chemisorption measurements. The performance of the catalysts with different loadings and supports were also compared.
    URI
    http://hdl.handle.net/10919/33112
    Collections
    • Masters Theses [19662]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us