Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Intelligent Parameter Adaptation for Chemical Processes

    Thumbnail
    View/Open
    etd.pdf (481.3Kb)
    Downloads: 102
    Date
    1999-07-08
    Author
    Sozio, John Charles
    Metadata
    Show full item record
    Abstract
    Reducing the operating costs of chemical processes is very beneficial in decreasing a company's bottom line numbers. Since chemical processes are usually run in steady-state for long periods of time, saving a few dollars an hour can have significant long term effects. However, the complexity involved in most chemical processes from nonlinear dynamics makes them difficult processes to optimize. A nonlinear, open-loop unstable system, called the Tennessee Eastman Chemical Process Control Problem, is used as a test-bed problem for minimization routines. A decentralized controller is first developed that stabilizes the plant to set point changes and disturbances. Subsequently, a genetic algorithm calculates input parameters of the decentralized controller for minimum operating cost performance. Genetic algorithms use a directed search method based on the evolutionary principle of "survival of the fittest". They are powerful global optimization tools; however, they are typically computationally expensive and have long convergence times. To decrease the convergence time and avoid premature convergence to a local minimum solution, an auxiliary fuzzy logic controller was used to adapt the parameters of the genetic algorithm. The controller manipulates the input and output data through a set of linguistic IF-THEN rules to respond in a manner similar to human reasoning. The combination of a supervisory fuzzy controller and a genetic algorithm leads to near-optimum operating costs for a dynamically modeled chemical process.
    URI
    http://hdl.handle.net/10919/34089
    Collections
    • Masters Theses [21548]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us