Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Ferrous Regeneration Process for Use in Alternate Anode Reaction Technology in Copper Hydrometallurgy

    Thumbnail
    View/Open
    Sarver_MS_thesis.pdf (678.7Kb)
    Downloads: 152
    Date
    2005-07-26
    Author
    Sarver, Emily A.
    Metadata
    Show full item record
    Abstract
    The Fe(II) regeneration process is an important aspect of Alternate Anode Reaction Technology (AART) using Fe(II)/Fe(III)-SO2 reactions for copper hydrometallurgy; however little has been done to study it specifically. The process regenerates Fe(II) via Fe(III) reduction by SO2(aq), catalyzed by activated carbon particles. To better understand and improve the process, two studies have been conducted with respect to variable factors and their affects on the regeneration. A study of fundamental kinetics confirms that the regeneration reaction is mass transfer-controlled, requiring adsorption of reactants onto the catalyst surface for reaction. The reaction rate is limited by the diffusivity of Fe(III). Initial Fe(III) concentration and carbon particle size are determined to be the most influential factors on the rate under the condition studied. Furthermore, it is observed that flow rate may inhibit the reaction by reducing ion diffusivity. A rate expression for the regeneration is derived and experimentally validated, and the Fe(III) diffusivity is determined to be 1.1x10-7 cm2/s. An optimization problem is also developed and solved for the process, constrained by the requirement that negligible SO2 could be present in the process effluent. Before optimization, a relationship is developed between regeneration rate and variable factors. Again, carbon size and initial Fe(III) are the most influential factors on the regeneration rate, related to it linearly; temperature is significant with a squared relationship to the rate; initial SO2 is insignificant. Optimal conditions are found with minimum carbon particle size, maximum initial Fe(III) concentration, and moderate temperature.
    URI
    http://hdl.handle.net/10919/34291
    Collections
    • Masters Theses [21556]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us