Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fate of Foodborne Pathogens During Osmotic Dehydration and Subsequent Storage of Apples

    Thumbnail
    View/Open
    Ramasamy-Thila-Thesis-FINAL.pdf (326.7Kb)
    Downloads: 195
    Date
    2003-07-24
    Author
    Ramasamy, Thilahavathy
    Metadata
    Show full item record
    Abstract
    The fate of E. coli O157:H7 and Salmonella spp. during osmotic dehydration of apples was determined at different processing temperatures, times and calcium chloride (CaCl2) concentrations. Apple slices were inoculated to achieve an 8 log CFU/ apple slice concentration of a five strain mixture of E. coli O157:H7 or Salmonella spp. and were soaked in sucrose solutions (60% w/w). In the first study, apple slices were subjected to osmotic dehydration at three different temperatures: 20°C, 45°C and 60°C. In a second study, CaCl₂ was added in the sucrose solution at concentrations of 2%, 4% and 8% to determine its efficacy as an antimicrobial agent. The storage effect of osmotic dehydrated apples on pathogen survival was also tested for seven days at 4°C. Samples were withdrawn at appropriate time intervals, diluted with 0.1% peptone water and surface plated onto recovery media. Recovery of E. coli O157:H7 was compared on Tryptic Soy Agar + 50 ppm nalidixic acid (TSAN) and MacConkey Sorbitol agar (MCS). Recovery of Salmonella was compared on TSAN and XLD agar. There was lower microbial reduction at the lower temperatures tested with approximately 1.0 and 3.0 log CFU/apple slice reduction at 20°C and 45°C, respectively. The population reduction of cells was highest at 60°C, with an approximate five log reduction for both microorganisms (P<0.001). CaCl₂ used as an additive in the osmotic solution, was associated with slightly higher reduction of both E. coli O157:H7 and Salmonella spp. Greater than a 5 log reduction was observed when the combination of CaCl₂ (8%) and 60°C processing temperature was used. During refrigerated storage E. coli O157:H7 and Salmonella decreased by approximately 4.5 log CFU/apple slice, but were still recoverable via direct plating at Day seven. The results of this study show that the survival of E. coli O157:H7 and Salmonella in osmotically dehydrated fruit is influenced by the osmotic processing method used and the level of additive (i.e., CaCl₂) utilized. Parameters associated with decreased survival of pathogens, and therefore, improve product safety, include increasing temperature and time of processing and increasing concentration of CaCl₂. However, E. coli O157:H7 and Salmonella in artificially contaminated apple slices, survived osmotic dehydration processing and subsequent storage under processing and storage parameters of this study. Therefore, processors who produce osmotically dehydrated fruit must consider the potential food safety impact of the osmotic dehydration processes they choose.
    URI
    http://hdl.handle.net/10919/34379
    Collections
    • Masters Theses [21068]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us