Show simple item record

dc.contributor.authorBeck, Catherine Keelen_US
dc.date.accessioned2014-03-14T20:43:30Z
dc.date.available2014-03-14T20:43:30Z
dc.date.issued2001-07-26en_US
dc.identifier.otheretd-08152001-160853en_US
dc.identifier.urihttp://hdl.handle.net/10919/34548
dc.description.abstractPolymer applications have become more demanding as industry continuously turns to more microscopic parts. Due to the interactions of the polymer chains with the supporting surface and the air interface, the thinner films required for such applications have distinctly different properties than those of the well-defined bulk systems. The goal of the current research is to elucidate the behavior of ultrathin films. Two separate studies were performed on thin films supported on silicon wafer substrates: the first focuses on the viscoelastic cooperativity of thin films, and the second concentrates on the morphological behavior of polymer brush films. For the first study, polymethyl methacrylate films were spin coated onto silicon wafers, and the film thickness was determined using ellipsometry. A series of thin films were examined using techniques such as dielectric analysis and thermal mechanical analysis. The theory of cooperativity, which explains polymeric behavior using the intermolecular and intramolecular forces among polymer chains, was employed to understand the behavior of these thin films. Another type of thin film, a polymer brush, was investigated in the second study. Polymer brushes are formed by chemically bonding one end of many polymer chains to a substrate. The other ends of the chains can interact with the surrounding environment creating a brush-like structure. Constraining one end of a polymer chain alters the behavior of such a thin film. Polymer brushes of the di-block copolymer poly(t-butyl methacrylate) and polystyrene were produced on silicon wafers using spin coating techniques. The effects of both grafting density and solvent washes were analyzed using contact angle analysis and atomic force microscopy. In addition, hydrolysis was successfully performed on existing polymer brush samples to produce polymer brushes of the di-block copolymer polymethyl acrylic acid and polystyrene.en_US
dc.publisherVirginia Techen_US
dc.relation.haspartetd.pdfen_US
dc.rightsI hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Virginia Tech or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.en_US
dc.subjectPolymer Brushesen_US
dc.subjectCooperativityen_US
dc.subjectThin filmsen_US
dc.titleCharacterization of Spin Coated Polymers in Nano-environments as a Function of Film Thicknessen_US
dc.typeThesisen_US
dc.contributor.departmentChemistryen_US
dc.description.degreeMaster of Scienceen_US
thesis.degree.nameMaster of Scienceen_US
thesis.degree.levelmastersen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineChemistryen_US
dc.contributor.committeechairWard, Thomas C.en_US
dc.contributor.committeememberEsker, Alan R.en_US
dc.contributor.committeememberDillard, John G.en_US
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-08152001-160853/en_US
dc.date.sdate2001-08-15en_US
dc.date.rdate2002-08-21
dc.date.adate2001-08-21en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record