Show simple item record

dc.contributor.authorStewart, Nathan Todden_US
dc.date.accessioned2014-03-14T20:43:31Z
dc.date.available2014-03-14T20:43:31Z
dc.date.issued2005-08-02en_US
dc.identifier.otheretd-08152005-140355en_US
dc.identifier.urihttp://hdl.handle.net/10919/34555
dc.description.abstract

Treatment of Rainbow Trout (Oncorhynchus mykiss) Raceway Effluent Using Baffled Sedimentation and Artificial Substrates

The treatment performance of a 6 m wide by 67 m long by 0.8 m deep, baffled sedimentation basin receiving rainbow trout (Oncorhynchus mykiss) raceway effluent was evaluated with and without the installation of artificial substrates (Aquamats®). Treatment efficiency was also determined using normal rearing condition effluent loading versus cleaning and harvesting events. Total suspended solids (TSS) removal for the total basin averaged 79% and 71% during normal rearing conditions, as compared to 92% and 79% during cleaning and harvesting operations, when the Aquamats® were installed versus removed, respectively. Total phosphorus (TP) removal by the total basin, with and without Aquamats®, was 20% and 23% during normal rearing conditions as compared to 55% and 65% under cleaning and harvesting conditions, respectively. Higher TP removal during cleaning operations was attributed to sedimentation of particulate fractions. Dissolved nutrient removal (ortho-phosphate (OP), total ammonia nitrogen (TAN), nitrate, nitrite, and total organic carbon (TOC)) was not consistent throughout the basin and did not improve when the Aquamats® were installed. A short contact time and periphyton grazing by isopods may have limited the capacity of the Aquamats®.

Calculated retention times with and without Aquamats® for the first half and total basin were 37% and 32% and 27% and 17% less than theoretical values, respectively based on a rhodamine WT dye study. Average surface overflow rates were adjusted accordingly and measured 19.1 m3/m2-day when the Aquamats® were installed, versus 14.8 m3/m2-day when the Aquamats® were removed for the overall basin. These rates are lower than previous recommendations for treating aquaculture effluents, but resulted in with high solids removal and consistently low TSS effluent (average < 2 mg/L) which may be necessary for strict discharge permits. Use of the overall basin minimized the occurrence of TSS measurements > 2 mg/L by 50%. For the first half of the sedimentation basin, the overflow rate averaged 44.1 m3/m2-day with Aquamats® versus 35.8 m3/m2-day without Aquamats®. The majority of effluent treatment occurred within the first half of the basin, which was responsible for 84% and 94% of total TSS removal, 42% and 100% and 61% and 80% of total TP removal during normal and cleaning/harvesting conditions, respectively.

Characterization of Nutrient Leaching Rates from Settled Rainbow Trout (Oncorhynchus mykiss) Sledge

The leaching of nutrients from settled rainbow trout (Oncorhynchus mykiss) sludge into overlying water was evaluated over a 7 day period. Nutrient leaching was assessed in a stagnant reaction tank and one agitated by aeration to simulate turbulent conditions in stocked production raceways. Leaching of total phosphorus (TP), ortho-phosphate (OP), total Kjeldahl nitrogen (TKN), total ammonia nitrogen (TAN), and total organic carbon (TOC) occurred rapidly during the first 24 h in both stagnant and agitated conditions. The highest 24 h leaching occurred in the agitated tank, and power regression equations accurately described the varying rates of increasing TP, OP, TAN and TKN. In the stagnant tank, linear increases of TP, OP, TKN and TAN concentrations occurred during the first 24 h. These linear increases continued from day 2-7, but at slower rates than occurred during the first 24 h. Average nutrient leaching rates (mg leached/g sludge-h);(dry weight basis) were calculated based on linear concentration increases. In the agitated tank, nutrient concentrations decreased after 60 h, as aerobic bacterial uptake and/or chemical precipitation was suspected. Therefore, average leaching rates could not be determined.

These findings reveal that daily cleanout of settling areas could eliminate the release of TP, OP, TAN, TKN, and TOC from settled solids by 66%, 65%, 39%, 76% and 51%, respectively, as compared to weekly cleanout schedules. Sustained leaching rates indicate nutrient release will likely continue beyond 7 days. This information suggests aggressive and continuous sludge management is most beneficial for maintaining high water quality and regulatory discharge compliance in fish production.

en_US
dc.publisherVirginia Techen_US
dc.relation.haspartThesis.pdfen_US
dc.rightsI hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Virginia Tech or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.en_US
dc.subjectAquamats®en_US
dc.subjectleachingen_US
dc.subjectraceway effluent treatmenten_US
dc.subjectsludgeen_US
dc.subjecttraceren_US
dc.subjectsedimentationen_US
dc.subjectnutrientsen_US
dc.titleTreatment of Rainbow Trout (Oncorhynchus mykiss) Raceway Effluent Using Baffled Sedimentation and Artificial Substrates and Characterization of Nutrient Leaching Rates from Settled Rainbow Trout (Oncorhynchus mykiss) Sludgeen_US
dc.typeThesisen_US
dc.contributor.departmentEnvironmental Engineeringen_US
dc.description.degreeMaster of Scienceen_US
thesis.degree.nameMaster of Scienceen_US
thesis.degree.levelmastersen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineEnvironmental Planningen_US
dc.contributor.committeememberNovak, John T.en_US
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-08152005-140355/en_US
dc.contributor.committeecochairBoardman, Gregory D.en_US
dc.contributor.committeecochairHelfrich, Louis A.en_US
dc.date.sdate2005-08-15en_US
dc.date.rdate2007-09-05
dc.date.adate2005-09-05en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record