Show simple item record

dc.contributor.authorJohnson, Hope E.en_US
dc.date.accessioned2014-03-14T20:44:29Z
dc.date.available2014-03-14T20:44:29Z
dc.date.issued2001-08-23en_US
dc.identifier.otheretd-08302001-154013en_US
dc.identifier.urihttp://hdl.handle.net/10919/34843
dc.description.abstractThis study is an investigation into methods of developing ergonomic guidelines for automotive assembly tasks involving insertion of small parts. The study was conducted in four major parts: 1) a method of determining and evaluating subjective exertion limits was modified and tested, 2) a large dataset was collected from an industrial population in 10 simulated assembly line tasks, 3) a smaller dataset was collected from a student population to assess hand dominance effects, and 4) strength data obtained was compared with a strength prediction model to determine if the model could predict manual insertion forces.

The traditional method of psychophysical data collection requires participants to extrapolate sensations from a relativity short session to judge if the task could be done for a much longer period. Maximum acceptable limits (MALs) are typically derived from having participants adjust a weight, resistance, or frequency to an acceptable level. The present study evaluated a relatively new method of collecting MAL data for simple, single-digit exertions where participants were asked to determine an MAL by self-adjusting and then regulating to maintain the exertion level. Results showed that MAL values obtained from a series of self-regulated exertions were independent of both analysis method and duration (5 minutes vs. 25 minutes) used for evaluation, and that the method was repeatable both within and between sessions.

Ergonomic guidelines are often obtained from the strength capacity for a certain task, as it is important to ensure that workers possess sufficient strength to accomplish a task. As task demands increase, however, a larger percentage of a worker's strength capability in required, and other factors, such as performance and worker comfort, tend to be compromised. In this work, both strength capacity and subjective limits were obtained for a variety of simulated tasks to facilitate development of guidelines for the specific tasks. The relationship between these two measures (maximum force, acceptable force) was determined, and acceptable limits were found to be approximately 55% of population strength capacity, with correlations (R2) ranging from 0.40 to 0.60 depending on the task, suggesting the subjective limits and strength capacity are related in these tasks. Hand dominance was found to have a small (5%), but significant (p = 0.006) effect on strength capability, and no significant effect on subjective limit.

Biomechanical strength prediction models can be used to assess loads placed on the human performing various tasks. One of the more popular models, Three-Dimensional Static Strength Prediction Program, is often used for heavy material handling tasks, such as lifting or pushing. The tasks studied presently, however, are manual insertions, requiring localized force application rather than whole body exertion. The prediction capabilities of this strength prediction model were compared with strength values obtained from the simulated assembly tasks. Results indicated that the model was not successful when predicting localized force, accounting for only 40% of the observed variance in strength (R2 = 0.4)

en_US
dc.publisherVirginia Techen_US
dc.relation.hasparthopesfinalthesis.pdfen_US
dc.rightsI hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Virginia Tech or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.en_US
dc.subjectSubjective Limitsen_US
dc.subjectMaximal Acceptable Limitsen_US
dc.subjectStrengthen_US
dc.subjectInsertion Forceen_US
dc.subjectStrength Predictionen_US
dc.titleStrength Capabilities and Subjective Limits for Repetitive Manual Insertion Tasksen_US
dc.typeThesisen_US
dc.contributor.departmentIndustrial and Systems Engineeringen_US
dc.description.degreeMaster of Scienceen_US
thesis.degree.nameMaster of Scienceen_US
thesis.degree.levelmastersen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineIndustrial and Systems Engineeringen_US
dc.contributor.committeechairNussbaum, Maury A.en_US
dc.contributor.committeememberSmith-Jackson, Tonya L.en_US
dc.contributor.committeememberBabski-Reeves, Kari L.en_US
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-08302001-154013/en_US
dc.date.sdate2001-08-30en_US
dc.date.rdate2002-09-03
dc.date.adate2001-09-03en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record