Show simple item record

dc.contributor.authorHouston, Edward Brianen_US

The use of best management practices or BMPs to treat urban stormwater runoff has been pervasive for many years. Extensive research has been conducted to evaluate the performance of individual BMPs at specific locations; however, little research has been published that seeks to evaluate the impacts of small, distributed BMPs throughout a watershed at the regional level. To address this, a model is developed using EPA SWMM 5.0 for the Duck Pond watershed, which is located in Blacksburg, Virginia and encompasses much of the Virginia Polytechnic and State Institute's campus and much of the town of Blacksburg as well. A variety of BMPs are designed and placed within the model. Several variations of the model are created in order to test different aspects of BMP design and to test the BMP modeling abilities of EPA SWMM 5.0. Simulations are performed using one-hour design storms and yearlong hourly rainfall traces. From these simulations, small water quality benefits are observed at the system level. This is seen as encouraging, given that a relatively small amount of the total drainage area is controlled by BMPs and that the BMPs are not sited in optimal locations. As expected, increasing the number of BMPs in the watershed generally increases the level of treatment. The use of the half-inch rule in determining the required water quality volume is examined and found to provide reasonable results.

The design storm approach to designing detention structures is also examined for a two-pond system located within the model. The pond performances are examined under continuous simulation and found to be generally adequate for the simulated rainfall conditions, although they do under-perform somewhat in comparison to the original design criteria.

The usefulness of EPA SWMM 5.0 as a BMP modeling tool is called into question. Many useful features are identified, but so are many limitations. Key abilities such as infiltration from nodes or treatment in conduit flow are found to be lacking. Pollutant mass continuity issues are also encountered, making specific removal rates difficult to define.

dc.publisherVirginia Techen_US
dc.rightsI hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Virginia Tech or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.en_US
dc.subjectBMP modelingen_US
dc.subjectcontinuous modelingen_US
dc.subjectEPA SWMMen_US
dc.titleThe Use of Stormwater Modeling for Design and Performance Evaluation of Best Management Practices at the Watershed Scaleen_US
dc.contributor.departmentCivil Engineeringen_US
dc.description.degreeMaster of Scienceen_US of Scienceen_US Polytechnic Institute and State Universityen_US Engineeringen_US
dc.contributor.committeechairKibler, David F.en_US
dc.contributor.committeememberHeatwole, Conrad D.en_US
dc.contributor.committeememberLoganathan, G. V.en_US

Files in this item


This item appears in the following Collection(s)

Show simple item record