Feasibility of Spectrum Sharing Between Airborne Weather Radar and Wireless Local Area Networks

TR Number
Date
2007-11-14
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Emerging technologies such as wireless local area networks and cellular telephones have dramatically increased the use of wireless communications services within the last 10 years. The shortage of available spectrum exists due to increasing demand for wireless services and current spectrum allocation regulations. To alleviate this shortage, Research aims to improve spectral efficiency and to allow spectrum sharing between separately managed and non-coordinating communications systems.

This thesis explores the feasibility of spectrum sharing between airborne weather radar and wireless local area networks at 9.3 GHz – 9.5 GHz. Characteristics of flight paths of aircraft using airborne weather radar and the low duty cycle of radar transmissions offer unique opportunities for spectrum sharing. But it was found that the extremely sensitive receivers provide challenges for designing a communications system meant for widespread use. The probability of causing harmful interference to airborne weather radar is too great for most types of wireless local area networks, but a direct sequence spread spectrum scheme could share spectrum with airborne weather radar. Bit errors in wireless local area network links caused by airborne weather radar interference do not significantly decrease the performance of the wireless local area network system. The distribution of interference outside of the airborne weather radar receiver by using direct sequence spread spectrum combined with the acceptable bit error rates indicate that while spectrum sharing between airborne weather radar and wireless local area network at 9.3 GHz – 9.5 GHz is not feasible, direct sequence spread spectrum systems can share spectrum with airborne weather radars under more limited assumptions.

Description
Keywords
Airborne Weather Radar, Interference, Radar, Spectrum Sharing, Wireless Local Area Networks, X Band, SHF Band, Wireless Communications
Citation
Collections