Development of a Visual Demonstration Platform for Parallel Evaluation of Active Suspension Systems
Abstract
As with any research area, a method for evaluating new ideas is required. Many computational methods exist for determining the ride performance of various suspension designs, however computational results alone can be hard to interpret and often deceiving. The following thesis outlines the design and validation of an experimental test rig for evaluating fully active or semi-active suspension algorithms. The test rig utilizes a fully active electromagnetic actuator which can simulate the performance characteristics of fully active as well as semi-active components which a suspension design may utilize. The demonstration rig couples visual inspection with computational analysis and provides the tools necessary for the designer to accurately interpret the ride performance of a new design and simultaneously compare it with a passive design. The goal is to provide a visual development platform in which new algorithms can be quickly and easily implemented and compared against existing algorithms to determine the performance characteristics of each on a physical system.
The test rig demonstrated its ability to test both fully-active and semi-active skyhook control algorithms, and accurately simulated both fully-active and semi-active suspension components. The test rig provides a simple and cost effective way to evaluate new algorithms both computationally and visually on a physical system.
Collections
- Masters Theses [18654]