Show simple item record

dc.contributor.authorBanjade, Saritaen_US
dc.date.accessioned2014-03-14T20:49:31Z
dc.date.available2014-03-14T20:49:31Z
dc.date.issued2008-12-04en_US
dc.identifier.otheretd-12142008-162545en_US
dc.identifier.urihttp://hdl.handle.net/10919/36128
dc.description.abstractAnaerobic digestion of wastewater sludge has widely been in application for stabilization of sludge. With the increase in hauling cost and many environmental and health concerns regarding land application of biosolids, digestion processes generating minimized sludge with better effluent characteristics is becoming important for many public and wastewater utilities.

This study was designed to investigate the performance of anaerobic-aerobic-anaerobic digestion of sludge and compare it to anaerobic-aerobic digestion and single stage mesophilic digestion of sludge. Experiments were carried out in three stages: Single-stage mesophilic anaerobic digestion (MAD) 20d SRT; Sequential Anaerobic/Aerobic digestion (Ana/Aer); and Anaerobic/Aerobic/Anaerobic digestion (An/Aer/An). The Anaerobic/Aerobic/Anaerobic digestion of sludge was studied with two options to determine the best option in terms of effluent characteristics. The two sludge withdrawal options were to withdraw effluent from the anaerobic digester (An/Aer/An â A) or withdraw effluent from the aerobic digester (An/Aer/An â B). Different operational parameters, such as COD removal, VS destruction, biogas production, Nitrogen removal, odor removal and dewatering properties of the resulting biosolids were studied and the results were compared among different processes.

From the study, it was found that An/Aer/An â B (wastage from aerobic reactor) provided better effluent characteristics than An/Aer/An â A (wastage from anaerobic reactor), Ana/Aer or conventional MAD. The study also shows that the Anaerobic/Aerobic/Anaerobic (An/Aer/An, with wastage from the aerobic or anaerobic digester) digestion of the sludge can improve the biosolids quality by improving the dewatering capabilities, with lower optimum polymer dose, reduced CST and increased cake solid concentration, and reduce the odor generation from the biosolids.

Both An/Aer/Ana â A and An/Aer/An â B gave 70% VS removal, compared to 50% with single MAD and 62% with only Ana/Aer. COD removal of both An/Aer/An â A and An/Aer/An â B was 70%, while it was 50% and 66% for single MAD and Ana/Aer respectively. In the aerobic reactors of Ana/Aer and An/Aer/An - B, nitrification and denitrification with removal of nitrogen was observed. The An/Aer/An â B system had more ammonia and TKN removal (70%) than Ana/Aer (64%).

The effluent from each stage was analyzed for dewatering ability, cake solid concentration and odor production potential. Compared with a single Ana/Aer system, the extra anaerobic step in An/Aer/An â A and â B reduced polysaccharides in the effluent. The Ana/Aer system released less protein than the conventional MAD system and the addition of the second anaerobic step - especially with system An/Aer/An â B (discharge from aerobic reactor) - greatly reduced protein, resulting in improved dewaterability and less polymer demand. An/Aer/An (both of the options: A and B) had lower CST than single MAD (both 15d and 20d SRT) and Ana/Aer. Compared to Ana/Aer, a reduction of 52% for An/Aer/An â A and 20% for An/Aer/An â B in polymer dose requirement was observed, indicating improved dewatering characteristics. The An/Aer/An â B has higher biosolid cake concentration than MAD or Ana/Aer. The results showed that An/Aer/An (both options: A and B) biosolid had lower odor generation potential than single MAD (15d and 20d SRT) or Ana/Aer. Of all the stages,the An/Aer/An â A and â B system, generated odor which peaked at shorter time and lasted for shorter duration of time.

en_US
dc.publisherVirginia Techen_US
dc.relation.haspartSaritaMastersThesis_2008.pdfen_US
dc.rightsI hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Virginia Tech or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.en_US
dc.subjectaerobic digestionen_US
dc.subjectsolids removalen_US
dc.subjectdewatering and biosolids odorsen_US
dc.subjectmesophilic anaerobic digestionen_US
dc.titleAnaerobic / Aerobic Digestion for Enhanced Solids and Nitrogen Removalen_US
dc.typeThesisen_US
dc.contributor.departmentEnvironmental Engineeringen_US
dc.description.degreeMaster of Scienceen_US
thesis.degree.nameMaster of Scienceen_US
thesis.degree.levelmastersen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineEnvironmental Planningen_US
dc.contributor.committeechairNovak, John T.en_US
dc.contributor.committeememberBoardman, Gregory D.en_US
dc.contributor.committeememberRandall, Clifford W.en_US
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-12142008-162545/en_US
dc.date.sdate2008-12-14en_US
dc.date.rdate2010-12-22
dc.date.adate2009-01-22en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record