VTechWorks staff will be away for the Memorial Day holiday on Monday, May 27, and will not be replying to requests at that time. Thank you for your patience.

Show simple item record

dc.contributor.authorRaymond, Fred Douglasen_US
dc.description.abstractCrop simulation models (CSMs) are used to evaluate management and environmental scenarios on crop growth and yields. Two corn (Zea Mays L.) crop growth simulation models, Hybrid-Maize, and CERES-Maize were calibrated and validated under Virginia conditions with the goal of better understanding corn response to variable environmental conditions and decreasing temporal yield variation. Calibration data were generated from small plot studies conducted at five site-years. Main plots were plant density (4.9, 6.2, 7.4, and 8.6 plants m-2); subplots were hybrids of differing relative maturity (RM) [early = Pioneer® Brand â 34B97â (108 day RM); medium = Pioneer® Brand â 33M54â (114 day RM); and late = Pioneer® Brand â 31G66â (118 day RM)]. Model validation was generated from large scale, replicated strip plot trials conducted at various locations across Virginia in 2005 and 2006. Prior to model adjustments based on calibration data, both CSMs under predicted corn grain yield in calibration and validation studies. CERES-Maize grain yield prediction error was consistent across the range of tested plant density while accuracy of Hybrid-Maize varied with plant density. Hybrid-Maize-estimated biomass production was highly accurate. Greater leaf area index (LAI) and biomass production were measured than was predicted by the CERES-Maize CSM. Both CSMs were modified based on calibration data sets and validated. Validation results of the calibrated CSMs showed improved accuracy in simulating planting date and environmental effects on a range of corn hybrids grown throughout Virginia over two years. We expect that both modified models can be used for strategic research and management decisions in mid-Atlantic corn production.en_US
dc.publisherVirginia Techen_US
dc.rightsI hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Virginia Tech or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.en_US
dc.subjectgrowth modelen_US
dc.subjectrelative maturityen_US
dc.subjectplant densityen_US
dc.titleReducing Corn Yield Variability and Enhancing Yield Increases Through the Use of Corn-Specific Growth Models.en_US
dc.contributor.departmentCrop and Soil Environmental Sciencesen_US
dc.description.degreeMaster of Scienceen_US
thesis.degree.nameMaster of Scienceen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineCrop and Soil Environmental Sciencesen_US
dc.contributor.committeechairThomason, Wade Everetten_US
dc.contributor.committeememberParrish, David J.en_US
dc.contributor.committeecochairAlley, Marcus M.en_US

Files in this item


This item appears in the following Collection(s)

Show simple item record