Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    High-Level CSP Model Compiler for FPGAs

    Thumbnail
    View/Open
    Asthana_RM_T_2010.pdf (1.411Mb)
    Downloads: 268
    Date
    2010-12-14
    Author
    Asthana, Rohit Mohan
    Metadata
    Show full item record
    Abstract
    The ever-growing competition in current electronics industry has resulted in stringent time-to-market goals and reduced design time available to engineers. Lesser design time has subsequently raised a need for high-level synthesis design methodologies that raise the design to a higher level of abstraction. Higher level of abstraction helps in increasing the predictability and productivity of the design and reduce the number of bugs due to human-error. It also enables the designer to try out dierent optimization strategies early in the design stage. In-spite of all these advantages, high-level synthesis design methodologies have not gained much popularity in the mainstream design flow mainly because of the reasons like lack of readability and reliability of the generated register transfer level (RTL) code. The compiler framework presented in this thesis allows the user to draw high-level graphical models of the system. The compiler translates these models into synthesizeable RTL Verilog designs that exhibit their desired functionality following communicating sequential processes (CSP) model of computation. CSP model of computation introduces a good handshaking mechanism between different components in the design that makes designs less prone to timing violations during implementation and bottlenecks while in actual operation.
    URI
    http://hdl.handle.net/10919/36428
    Collections
    • Masters Theses [20950]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us