Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    CMZP and Mg-doped Al2TiO5 Thin film Coatings for High Temperature Corrosion Protection of Si3N4 Heat Exchangers

    Thumbnail
    View/Open
    thesis.pdf (1.241Mb)
    Downloads: 93
    Date
    1998-04-21
    Author
    Nguyen, Thierry Huu Chi
    Metadata
    Show full item record
    Abstract
    Silicon nitride (Si3N4) is a potentially good ceramic material for industrial heat exchangers. However, at elevated temperatures and in coal combustion atmospheres its lifetime is severely reduced by oxidation. To increase its corrosion resistance, the formation of a protective oxidation barrier layer was promoted by the deposition of oxide thin films. Homogeneous and crack-free oxide coatings of calcium magnesium zirconium phosphate (CMZP) and magnesium doped aluminum titanate (Mg-doped Al2TiO5) were successfully deposited on Si3N4 using the sol-gel and dip-coating technique. Coated and uncoated samples were then exposed to a sodium containing atmosphere at 1000*C for 360 hours to simulate typical industrial environment conditions. Structural post-exposure analyses based on weight loss measurements and mechanical tests indicated better corrosion resistance and strength retention for CMZP coated Si3N4 compared to as received and Mg-doped Al2TiO5 coated Si3N4. This difference was attributed to the protective nature of the corrosion layer, which in the case of CMZP, significantly impeded the inward diffusion of oxygen to the Si3N4 surface.
    URI
    http://hdl.handle.net/10919/36628
    Collections
    • Masters Theses [19412]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us