Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design, Syntheses and Bioactivities of Androgen Receptor Targeted Taxane Analogs, Simplified Fluorescently Labeled Discodermolide Analogs, and Conformationally Constrained Discodermolide Analogs

    Thumbnail
    View/Open
    Qi_J_D_2010.pdf (3.601Mb)
    Downloads: 110
    Date
    2010-02-18
    Author
    Qi, Jun
    Metadata
    Show full item record
    Abstract
    Prostate cancer is the most common non-skin cancer for men in America. The androgen receptor exerts transcriptional activity and plays an important role for the proliferation of prostate cancer cells. Androgen receptor ligands bind the androgen receptor and inhibit its transcriptional activity effectively. However, prostate cancer can progress to hormone refractory prostate cancer (HRPC) to avoid this effect. Chemotherapies are currently the primary treatments for HRPC. Unfortunately, none of the available chemotherapies are curative. Among them, paclitaxel and docetaxel are two of the most effective drugs for HRPC. More importantly, docetaxel is the only form of chemotherapy known to prolong survival in the HRPC patients. We hypothesized that the conjugation of paclitaxel or docetaxel with an androgen receptor ligand will overcome the resistance mechanism of HRPC. Eleven conjugates were designed, synthesized and biologically evaluated. Some of them were active against androgen-independent prostate cancer, but they were all less active than paclitaxel and docetaxel. Discodermolide is a microtubule interactive agent, and has a similar mechanism of action to paclitaxel. Interestingly, discodermolide is active against paclitaxel-resistant cancer cells and can synergize with paclitaxel, which make it an attractive anticancer drug candidate. Understanding the bioactive conformation of discodermolide is important for drug development, but this task is difficult due to the linear and flexible structure of discodermolide. Indirect evidence for the orientation of discodermolide in the tubulin binding pocket can be obtained from fluorescence spectroscopy of the discodermolide tubulin complex. For this purpose, we designed and synthesized a simplified fluorescently labeled discodermolide analog, and it was active in the tubulin assembly bioassay. In addition, a conformationally constrained discodermolide was designed to mimic the bioactive conformation according to computational modeling. The synthetic effort was made, but failed during one of the final steps.
    URI
    http://hdl.handle.net/10919/37537
    Collections
    • Doctoral Dissertations [16340]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us