Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Inventorying trees in an urban landscape using small-footprint discrete return imaging lidar

    Thumbnail
    View/Open
    Shrestha_Rupesh_D_2011.pdf (3.219Mb)
    Downloads: 94
    Shrestha_Rupesh_D_2011_Copyright.pdf (408.1Kb)
    Downloads: 59
    Date
    2011-03-28
    Author
    Shrestha, Rupesh
    Metadata
    Show full item record
    Abstract
    Automation of urban tree inventory using remote sensing is needed not only to reduce inventory costs but also to support carbon accounting for urban planners and policy-makers. However, urban areas are heterogeneous and complex, and a more sophisticated approach is needed for using remote-sensing technology like lidar for tree inventory in urban areas than is required for forested environments. Based on remote sensing and field data from a suburban residential area in the central United States, this dissertation presents a methodology for utilizing airborne small-footprint lidar data to inventory urban trees. This dissertation proposes approaches that have the potential to automate three main activities of urban tree inventory -- identifying the locations of trees, classifying the trees into taxonomic categories, and estimating biophysical parameters of individual trees -- using airborne lidar data. Mathematical morphological operations followed by a marker-controlled watershed segmentation were found to perform well (r = 0.82 to 0.92) to delineate individual tree crowns in urban areas, especially when the trees occur in relatively isolated conditions. Using various distribution metrics of lidar returns, random forests were used to classify individual trees into different taxonomic classes (broadleaves/conifers, genera, and species). A classification accuracy of 80.5% was obtained when separating trees only into broadleaf and conifer classes, 50.0% for genera, and 51.3% for species. Using spectral metrics from high-resolution satellite imagery in addition to lidar-derived predictors improved the classification accuracies by 10.4% (to 90.9%) for broadleaf and conifer, 8.4% (to 58.4%) for genera and 8.8% (to 60.1%) for species compared to using lidar metrics alone. Prediction models to estimate several biophysical parameters such as height, crown area, diameter at breast height, and biomass were developed using lidar point cloud distributional metrics from individual trees. A high level of accuracy was attained for estimating tree height (R2=0.89, RMSE=1.3m), diameter at breast height (R2=0.82, RMSE=9.1cm), crown diameter (R2=0.90, RMSE=0.7m) and biomass (R2=0.67, RMSE=1.2t). Our results indicate that, while using lidar data alone can achieve the automation of major urban forest inventory tasks to an acceptable level of accuracy, a synergistic use of lidar data with other spectral data such as hyperspectral or orthoimagery, which are usually available at least in the United States for most urban areas, can considerably improve the performance of the lidar-based method.
    URI
    http://hdl.handle.net/10919/37538
    Collections
    • Doctoral Dissertations [14916]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us