Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Assessment of First-Year Engineering Students' Spatial Visualization Skills

    Thumbnail
    View/Open
    Steinhauer_HM_2012.pdf (2.531Mb)
    Downloads: 1071
    Steinhauer_HM_Survey_of_Earned_Doctorates.pdf (335.8Kb)
    Downloads: 62
    Steinhauer_HM_Dissertation_Approval_Form.pdf (110.9Kb)
    Downloads: 42
    Date
    2012-03-30
    Author
    Steinhauer, Heidi Marie
    Metadata
    Show full item record
    Abstract
    This research was undertaken to investigate the assessment of the spatial visualization skills of first-year engineering students. This research was conducted through three approaches: (1) a review of cogent research framed by a spatial visualization matrix, (2) the development and validation of an Engineering Graphics Concept Inventory, and (3) an investigation into the relationship into the correlations between 3D modeling skills and performance on the Purdue Spatial Visualization Test: Rotations (PSVT:R) and the Mental Cutting Test (MCT). The literature reviewed spans the field of published research from the early 1930â s to the present. This review expands and provides a new direction on published research as it is viewed through the lenses of the four common pedagogical approaches to teaching spatial visualization: the standard approach, the remedial approach, computer-aided design, and the theory-informed approach. A spatial visualization matrix of criteria was developed to evaluate each of the methods. The four principle criteria included: learning outcomes, active and engaged learning, stage of knowledge, and explanatory power. Key findings from the literature review indicate the standard method is not the most effective method to teaching spatial visualization while the theory-informed method as evaluated by the matrix is the most effective pedagogical approach of the four methods evaluated. The next phase of this research focused on the two-year development, validation, and reliability of an Engineering Graphics Concept Inventory given to over 1300 participants from three universities. A Delphi method was used to determine the key concepts identified by the expert panel to be included in the inventory. A student panel of 20 participants participated in the pilot study of â think aloudâ protocols to refine inventory test items and to generate the appropriate distractors. Multiple pilot studies coupled with a detailed psychometric analysis provided the feedback and direction needed for the adjustment of test items. The reported Cronbachâ s α for the final instrument is .73, which is within the acceptable range. The inventory is ready to be implemented and the predictability of the instrument, in reference to studentsâ spatial visualization skills, to be researched. The final chapter of this research was a correlational study of the relationship between first-year engineering studentâ s 3D modeling frameworks and their performance on the PSVT:R and the MCT. 3D modeling presence in graphical communications has steadily increased over the last 15 years; however there has been little research on the correlations between the standard visualization tests and 3D modeling. 220 first-year engineering students from Embry-Riddle Aeronautical University participated in the study in the fall of 2011. The main findings from this research indicate there is no significant correlational relationship between the PSVT:R and a studentâ s 3D modeling ability, but there is one for the MCT. The significant correlational factors reported for the MCT and modeling aptitude for the three assignments are: r = .32 (p < 0.05), .36 (p< 0.01), and .47 (p< 0.01). These findings may be used by undergraduate educators and course administrators to more effectively organize engineering graphics education to yield students with deeper, more meaningful knowledge about engineering graphics and its inherent connection throughout the engineering curriculum. Together these three studies represent a sequential exploratory mixed methods approach that intertwines qualitative interviews and observations to frame the quantitative instrument and data collection. Results of this study can be used to guide the assessment of incoming freshmen engineering students, and the modification and development of engineering graphics courses.
    URI
    http://hdl.handle.net/10919/37596
    Collections
    • Doctoral Dissertations [14856]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us