Show simple item record

dc.contributor.authorHymo, John A.en_US
dc.date.accessioned2014-03-14T21:19:03Z
dc.date.available2014-03-14T21:19:03Z
dc.date.issued1990-05-14en_US
dc.identifier.otheretd-09202005-090947en_US
dc.identifier.urihttp://hdl.handle.net/10919/39404
dc.description.abstract

In this dissertation the question of whether or not a relative extension of number fields has a relative integral basis is considered. In Chapters 2 and 3 we use a criteria of Mann to determine when a cyclic quartic field or a pure quartic field has an integral basis over its quadratic subfield. In the final chapter we study the question: if the relative discriminant of an extension K / k is principal, where [K : k] = l such that l is an odd prime and k is either a quadratic or a normal quartic number field, does K / k have an integral basis?

en_US
dc.format.mediumBTDen_US
dc.publisherVirginia Techen_US
dc.relation.haspartLD5655.V856_1990.H966.pdfen_US
dc.subjectNumber theory researchen_US
dc.subject.lccLD5655.V856 1990.H966en_US
dc.titleProblems involving relative integral bases for quartic number fieldsen_US
dc.typeDissertationen_US
dc.contributor.departmentMathematicsen_US
dc.description.degreePh. D.en_US
thesis.degree.namePh. D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineMathematicsen_US
dc.contributor.committeechairParry, Charles J.en_US
dc.contributor.committeememberBrown, Ezra A.en_US
dc.contributor.committeememberRossi, John F.en_US
dc.contributor.committeememberSnider, Robert L.en_US
dc.contributor.committeememberMcCoy, Robert A.en_US
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-09202005-090947/en_US
dc.date.sdate2005-09-20en_US
dc.date.rdate2005-09-20
dc.date.adate2005-09-20en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record