Show simple item record

dc.contributor.authorHuang, Jiann-Shiuhen_US
dc.date.accessioned2014-03-14T21:21:01Z
dc.date.available2014-03-14T21:21:01Z
dc.date.issued1991-06-14en_US
dc.identifier.otheretd-10132005-152531en_US
dc.identifier.urihttp://hdl.handle.net/10919/39824
dc.description.abstractLet X be a compact Hausdorff space and A a uniform algebra on X. Let if be an isometric unital representation that maps A into bounded linear operators on a Hilbert space. This research investigated that there is a one-to-one correspondence between the collection of maximal sets of antisymmetry for A and that of maximal projections of antisymmetry for Ï ( A) under the extension of Ï if Ï satisfies a certain regularity property.en_US
dc.format.mediumBTDen_US
dc.publisherVirginia Techen_US
dc.relation.haspartLD5655.V856_1991.H835.pdfen_US
dc.subjectMaximal subgroupsen_US
dc.subject.lccLD5655.V856 1991.H835en_US
dc.titleOne-to-one correspondance between maximal sets of antisymmetry and maximal projections of antisymmetryen_US
dc.typeDissertationen_US
dc.contributor.departmentMathematicsen_US
dc.description.degreePh. D.en_US
thesis.degree.namePh. D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineMathematicsen_US
dc.contributor.committeechairOlin, Robert F.en_US
dc.contributor.committeememberMcCoy, Robert A.en_US
dc.contributor.committeememberArnold, J. A.en_US
dc.contributor.committeememberRossi, John F.en_US
dc.contributor.committeememberHaskell, Peter E.en_US
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-10132005-152531/en_US
dc.date.sdate2005-10-13en_US
dc.date.rdate2005-10-13
dc.date.adate2005-10-13en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record