Show simple item record

dc.contributor.authorHuang, Guoweien_US
dc.date.accessioned2014-03-14T21:22:07Z
dc.date.available2014-03-14T21:22:07Z
dc.date.issued1994-12-05en_US
dc.identifier.otheretd-10242005-124128en_US
dc.identifier.urihttp://hdl.handle.net/10919/40133
dc.description.abstract

We study the Korteweg-de Vries-Burgers equation. With a deep investigation into the spectral and smoothing properties of the linearized system, it is shown by applying Banach Contraction Principle and Gronwall's Inequality to the integral equation based on the variation of parameters formula and explicit representation of the operator semigroup associated with the linearized equation that, under appropriate assumption appropriate assumption on initial states w(x, 0), the nonlinear system is well-posed and its solutions decay exponentially to the mean value of the initial state in H1(O, 1) as t -> +â .

en_US
dc.format.mediumBTDen_US
dc.publisherVirginia Techen_US
dc.relation.haspartLD5655.V856_1994.H8357.pdfen_US
dc.subjectKorteweg-de Vries equationen_US
dc.subjectBurgers equationen_US
dc.subject.lccLD5655.V856 1994.H8357en_US
dc.titleAsymptotic properties of solutions of a KdV-Burgers equation with localized dissipationen_US
dc.typeDissertationen_US
dc.contributor.departmentMathematicsen_US
thesis.degree.namePhDen_US
thesis.degree.leveldoctoralen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
dc.contributor.committeechairRussell, David L.en_US
dc.contributor.committeememberKim, Jong Uhnen_US
dc.contributor.committeememberLin, Taoen_US
dc.contributor.committeememberRenardy, Michael J.en_US
dc.contributor.committeememberRogers, Robert C.en_US
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-10242005-124128/en_US
dc.date.sdate2005-10-24en_US
dc.date.rdate2005-10-24
dc.date.adate2005-10-24en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record