Show simple item record

dc.contributor.authorMankolo, Regine Ndoleen_US
dc.date.accessioned2014-03-14T21:23:17Z
dc.date.available2014-03-14T21:23:17Z
dc.date.issued1997-10-08en_US
dc.identifier.otheretd-11597-163744en_US
dc.identifier.urihttp://hdl.handle.net/10919/40386
dc.description.abstractLand application of poultry litter has been successfully practiced for centuries to maintain and improve soil fertility, although over application may promote loss of nutrients through runoff or leaching. To decrease the potential for adverse environmental impacts of N and P in groundwater, a new approach developed in this research was to use a composted mixture of poultry litter (PL) and yard waste (YW) as a soil amendment for corn (Zea mays L.) production. Objectives of this research were to evaluate effects of pre-compost C:N substrate ratios for poultry litter-yard waste compost (PYC) on the availability of soil P, to determine the P response of corn plants to inorganic P, PL and PYC application, and to study relationships between P availability and both inorganic P and PYC application. Langmuir isotherms were used in this research to select soils with relatively high P fixation capacities. Phosphorus sorption maximum for soils evaluated were as follows: 304 and 449 micrograms of P per gram for A horizon Coastal Plain soils (Series: Kempsville and Myatt, respectively); 487 micrograms of P per gram for an A horizon Ridge and Valley soil (Series: Frederick); 918 and 603 micrograms of P per gram for A horizon Piedmont soils (Series: Elioak and Vance, respectively); 1099 microgram of P per gram for mine tailings (Series: Emporia located in the Coastal Plain); and 1524 microgram of P per gram for A and upper mixed horizon soil (Series: Starr from Piedmont region). Based on intermediate to high P sorption maxima, soil from the Vance and Starr series and mine tailing from Emporia series were selected for greenhouse research to evaluate P availability of PYC . Treatments applied to the soil in the greenhouse and field studies consisted of various levels of P as Ca(H2PO4)2.H2O, PL and PYC from 15:1, 20:1, and 25:1 C:N ratio substrates. Each P source increased dry weight of corn plants grown in the greenhouse by alleviation of P deficiency. Phosphorus uptake from PYC and PL application was either equal to or higher than P uptake from an equal level of P application as Ca(H2PO4)2.H2O. Application of 87.2 kg of P per ha increased corn grain yields in a field experiment on Vance sandy loam from 6340 kg per ha on the control to a range of 10,170 to 11,350 kg ha for PYC digested from the three C:N ratio substrates. The yields on PYC treatments were attributed to a combination of factors including slow mineralization of P with less fixation during the growing season. The low P fixing capacity results from the blockage of H2PO4- sorption by competition of negative charge from organic material and from the displacement of H2PO4- in soil solution by OH- from application of the alkaline composts. It would be desirable from the standpoint of more PL utilization to prepare composts from low substrate ratio substrates. Hence, in this research composts were prepared from 15:1, 20:1, and 25:1 C:N substrates, which consisted of PL and YW. The composting process was complete after only four months for the PYC from the 20:1 and 25:1 C:N ratio substrates. Yard waste compost without PL may require somewhere between two to three years for complete composting as opposed to four months with PL addition. The composting was incomplete in four months (presence of undigested leaves and NH3) for the PYC from the 15:1 C:N ratio substrate. The latter compost resembled poultry manure rather than a high quality compost after the 4-month composting period.en_US
dc.publisherVirginia Techen_US
dc.relation.haspartappa.pdfen_US
dc.relation.haspartch1.pdfen_US
dc.relation.haspartch2.pdfen_US
dc.relation.haspartch3.pdfen_US
dc.relation.haspartch4.pdfen_US
dc.relation.haspartch5.pdfen_US
dc.relation.haspartch6.pdfen_US
dc.relation.haspartch7.pdfen_US
dc.relation.haspartetd.pdfen_US
dc.relation.haspartvita.pdfen_US
dc.rightsI hereby grant to Virginia Tech or its agents the right to archive and to make available my thesis or dissertation in whole or in part in the University Libraries in all forms of media, now or hereafter known. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.en_US
dc.subjectwasteen_US
dc.subjectcomposten_US
dc.subjectphosphorus adsorptionen_US
dc.subjectmineralizationen_US
dc.titleEffect of Poultry Litter-Yard Waste Compost Application on Phosphorus Availability in Diverse Soilsen_US
dc.typeDissertationen_US
dc.contributor.departmentCrop and Soil Environmental Sciencesen_US
dc.description.degreePh. D.en_US
thesis.degree.namePh. D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineCrop and Soil Environmental Sciencesen_US
dc.contributor.committeechairMartens, David C.en_US
dc.contributor.committeememberMorse, Ronald D.en_US
dc.contributor.committeememberBrake, Julian D.en_US
dc.contributor.committeememberBaker, James C.en_US
dc.contributor.committeememberMcKenna, James R.en_US
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-11597-163744/en_US
dc.date.sdate1997-10-08en_US
dc.date.rdate1998-12-10
dc.date.adate1997-12-10en_US


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record