Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Continuous HMM connected digit recognition

    Thumbnail
    View/Open
    LD5655.V855_1996.P336.pdf (4.590Mb)
    Downloads: 82
    Date
    1996
    Author
    Padmanabhan, Ananth
    Metadata
    Show full item record
    Abstract
    In this thesis we develop a system for recognition of strings of connected digits that can be used in a hands-free telephone system. We present a detailed description of the elements of the recognition system, such as an endpoint algorithm, the extraction of feature vectors from the speech samples, and the practical issues involved in training and recognition, in a Hidden Markov Model (HMM) based speech recognition system. We use continuous mixture densities to approximate the observation probability density functions (pdfs) in the HMM. While more complex in implementation, continuous (observation) HMMs provide superior performance to the discrete (observation) HMMs. Due to the nature of the application, ours is a speaker dependent recognition system and we have used a single speaker's speech to train and test our system. From the experimental evaluation of the effects of various model sizes on recognition performance, we observed that the use of HMMs with 7 states and 4 mixture density components yields average recognition rates better than 99% on the isolated digits. The level-building algorithm was used with the isolated digit models, which produced a recognition rate of better than 90% for 2-digit strings. For 3 and 4-digit strings, the performance was 83 and 64% respectively. These string recognition rates are much lower than expected for concatenation of single digits. This is most likely due to uncertainties in the location of the concatenated digits, which increases disproportionately with an increase in the number of digits in the string.
    URI
    http://hdl.handle.net/10919/40849
    Collections
    • Masters Theses [20932]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us