Simultaneous active passive/control of extensional and flexural power flows in infinite thin beams

TR Number
Date
1996-07-15
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Passive control techniques to minimize structural vibrations are limited with respect to the amount of attenuation obtained especially in the low-frequency region but do not require adding any power. Active control methods are effective for reducing structural vibrations, especially at low frequencies, but may require significant control effort. Thus, passive and active control methods have complementary frequency ranges of application. This research consists of combining active and passive control techniques to simultaneously attenuate extensional and flexural power flows in infinite thin beams and determine the advantages and disadvantages of such a combination. An analytical model is developed for an infinite beam with a passive insert of high damping placed at some distance from a point force excitation (passive approach). The passive control of vibrations results in a reduction of both extensional and flexural power flows downstream of the passive material discontinuity. The simultaneous active control of extensional and flexural waves, using two co-located independent piezoceramic actuators bonded to the surface of the beam, is theoretically studied. The active control model shows that the use of two independent piezoceramic actuators allows complete cancellation of the total power flow (sum of the extensional and flexural power flows) downstream of the actuators. The combination of passive and active control methods for three different configurations (actuators located upstream of, downstream of, and on the passive insert) is investigated and complete control of the total power flow is again achieved. The results demonstrate that in the case of the actuators bonded to the passive material discontinuity, the active/passive combination has great potential for reducing the control effort required for the active controller. Finally, an approximation of the influence of heavy fluid flanking paths on the optimal active/passive system is developed by simulation of these flanking paths using axial and torsional springs. This last study shows that both axial and torsional springs will result in modification of the control effort required by the actuators if their respective stiffness is greater than the equivalent stiffness of the section in parallel with the springs.

Description
Keywords
vibration control, active/passive control, smart structures
Citation
Collections