Show simple item record

dc.contributor.authorKitchens, Clarence Wesleyen_US
dc.date.accessioned2014-03-14T21:30:00Z
dc.date.available2014-03-14T21:30:00Z
dc.date.issued1967-08-05en_US
dc.identifier.otheretd-02172010-020029en_US
dc.identifier.urihttp://hdl.handle.net/10919/41221
dc.description.abstract

Assuming a polynomial of the fourth degree to describe the velocity function, the momentum integral equation for a second-order fluid is used to develop differential equations describing the boundary-layer for second-order flow past external surfaces. Using the momentum integral equation and appropriate boundary conditions, results are tabulated for both plane and axisymmetric stagnation flows. The effect of the second-order viscosity terms on the boundary-layer parameters for problems of flow past a circular cylinder and flow past a sphere is discussed. An interesting result is found in the case of flow past a sphere; for certain values of the second-order viscosity terms, there is a reduction in the viscous drag from that of Newtonian flow.

en_US
dc.format.mediumBTDen_US
dc.publisherVirginia Techen_US
dc.relation.haspartLD5655.V855_1967.K55.pdfen_US
dc.subjectFilm coefficients (Physics)en_US
dc.subject.lccLD5655.V855 1967.K55en_US
dc.titleAn integral method for solving the boundary-layer equations for a second-order viscoelastic liquid.en_US
dc.typeThesisen_US
dc.contributor.departmentEngineering Mechanicsen_US
thesis.degree.nameMaster of Scienceen_US
thesis.degree.levelmastersen_US
thesis.degree.grantorVirginia Polytechnic Instituteen_US
dc.contributor.committeechairMook, Dean T.en_US
dc.contributor.committeememberDavis, R. Thomasen_US
dc.contributor.committeememberSmith, Charles W.en_US
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-02172010-020029/en_US
dc.date.sdate2010-02-17en_US
dc.date.rdate2010-02-17
dc.date.adate2010-02-17en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record