Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • Student Works
    • Master's Papers and Projects
    • View Item
    •   VTechWorks Home
    • Student Works
    • Master's Papers and Projects
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Controlled patterning of self-assembled monolayer films

    Thumbnail
    View/Open
    LD5655.V851_1993.S677.pdf (2.156Mb)
    Downloads: 19
    Date
    1993
    Author
    Sporakowski, Laura
    Metadata
    Show full item record
    Abstract
    This paper is a critical review of three current methods used in patterning self-assembled monolayer films. It begins with an introduction to monolayer films and their potential uses. This is followed by a discussion of self-assembly and the various experimental methods used to form monolayer films. The discussion focuses mainly on silanes as the compounds used to form the films, but it also includes thiols and carboxylic acids. The mechanism for self-assembly is reviewed too. Various characterization techniques are presented next. Wettability, ellipsometry, XPS, UV-vis spectroscopy, IR spectroscopy, Raman spectroscopy, SIMS, STM, and AFM are all presented and their applications to thin film characterization are mentioned. Following the characterization techniques is a section on patterning. The three methods analyzed include patterning procedures by Kleinfeld and co-workers, Wrighton and Whitesides and co-workers, and Calvert and co-workers. It is concluded that the method by Kleinfeld and co-workers requires too many steps and too much time; the method by Wrighton and Whitesides and co-workers does not produce in-plane patterns but rather stepped ones; and the method by Calvert and coworkers requires expensive equipment not readily available to all laboratories. In addition, none of these three patterning methods can create features any smaller than in the micrometer range. Three more recent patterning methods by Wrighton and Whitesides are presented next. They are micromachining, microwriting, and "rubber stamping" and they are capable of producing pattern features in the hundreds of nanometers range. This is an improvement but it is still not the ideal of being able to pattern molecule by molecule. Suggestions for future research follow the analysis of the patterning methods.
    URI
    http://hdl.handle.net/10919/41655
    Collections
    • Master's Papers and Projects [633]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us