Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Chemical composition and physical properties of 20% milk fat reformulated creams manufactured from reduced cholesterol butteroil

    Thumbnail
    View/Open
    LD5655.V855_1995.E455.pdf (62.07Mb)
    Downloads: 421
    Date
    1995-05-23
    Author
    Elling, Jodi L.
    Metadata
    Show full item record
    Abstract
    A reduced cholesterol butteroil was emulsified into skim milk, buttermilk, or buttermilk/butter-derived aqueous phase using different homogenization pressures and heat treatments to produce a 20% milk fat cream with a reduced cholesterol content. Transmission electron microscopic examination of reformulated cream emulsions showed an oil-in-water emulsion typical of milk lipid globules found in natural homogenized cream. Heat treatment (pasteurized and unpasteurized) and homogenization pressure (1500/500 PSI and 2000/500 PSI) had no effect on cream composition except for the significant effect of homogenization pressure on cholesterol content and the amount of phospholipid associated with the lipid globules. The formulations using buttermilk or buttermilk and butter-derived aqueous phase were the most similar in the amount of protein and phospholipid associated with the lipid globules when compared to a natural homogenized cream. The viscosity. interfacial area of lipid globules. creaming stability, and feathering stability of the three formulations and a control at the two homogenization pressures were measured over a two week storage period at 7°C. The apparent viscosity and interfacial area of the different creams varied significantly with formulation but not with homogenization pressure or length of storage time (p ≤ 0.05). Creaming stability was significantly affected by formulation, homogenization pressure, and length of storage tinle (p S ≤.05). Feathering appeared to be unaffected by any of the treatment factors. The reformulated cream using buttermilk and butter-derived aqueous phase was the closest in comparison to a natural homogenized cream in chelllical composition and physical properties. The ability to emulsify the reduced cholesterol butteroil into a stable cream emulsion may allow for the use of reduced cholesterol butteroil in fluid dairy products, ice cream, and cheese. Development of any full-fat product with a reduced cholesterol content will require a reformulation step until a method for cholesterol removal directly from fluid milk or cream is developed.
    URI
    http://hdl.handle.net/10919/41749
    Collections
    • Masters Theses [20953]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us