Show simple item record

dc.contributor.authorVidt, Stacey Elizabethen_US
dc.date.accessioned2014-03-14T21:36:54Z
dc.date.available2014-03-14T21:36:54Z
dc.date.issued2007-05-21en_US
dc.identifier.otheretd-06042007-112857en_US
dc.identifier.urihttp://hdl.handle.net/10919/42857
dc.description.abstractA compelling mystery in the study of exercise is mechanisms of skeletal muscle fatigue. Broadly described, muscle fatigue is the uncomfortable sensation that particular muscle groups are shutting down and muscle force production cannot continue. More specifically, muscle fatigue is defined as an activity-induced inability to continue to produce a desired level of force. Several groups suggest that a major cause of force loss during fatigue is reductions in the rates of sarcoplasmic reticulum (SR) calcium (Ca2+) release and uptake. These changes result in diminished contractile machinery activation, reduced force production and slowed relaxation. During exercise, adenosine 5'-triphosphate (ATP) is the energy currency that is used to support force production. As a result of ATP hydrolysis and re-synthesis, adenosine diphosphate (ADP) and adenosine monophosphate (AMP) levels rise. AMP kinase (AMPK) is an enzyme that becomes activated as a result of increased AMP levels. It is thought to function as a metabolic â master switchâ within the muscle and plays a major role in carbohydrate and fat metabolism. Once AMPK is activated it regulates several ATP consuming and producing pathways. The overall objective of this project was to determine if increased metabolism during exercise contributes to SR Ca2+ dysfunction during fatigue. If this is true, artificial activation of AMPK via 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) should induce changes in SR function that are qualitatively similar to those caused by fatigue. In study 1, mice were injected with 0.85 mg/kg AICAR (or saline solution) and both gastrocnemius muscles were removed one hour later. In study 2, EDL muscles were placed in a muscle bath and incubated in AICAR (4mM) or stimulated to fatigue. Glycogen, glucose-6-phosphate (G-6-P), ATP, ADP, and phosphocreatine (PCr) were examined in all groups of muscles. Alterations in SR calcium uptake and release rates due to the presence of AICAR were also studied as a likely cause of muscle fatigue. AICAR treatment in vivo did not alter muscle glycogen, glucose, ATP, ADP or PCr concentrations. However, G-6-P levels were increased by 137%. This was accompanied by a 36% reduction in the SR Ca2+ uptake rate and a 42% reduction in Ca2+-stimulated Ca2+ ATPase activity as well as 13-15% reductions in the rates of Ca2+ release. These changes were not associated with SR Ca2+ pump content. Administration of AICAR in vitro also increased G-6-P content (200%) without altering the concentrations of glycogen, glucose, G-6-P, ATP, ADP or PCr. AICAR decreased SR Ca2+ uptake rate by 28% and the rate of Ca2+ release by 16%. For comparison, fatiguing stimulation reduced the rates of SR Ca2+ uptake and release by 31 and 41%, respectively. Taken together, these results indicate that when administered to skeletal muscle both in vivo and in vitro, AICAR evokes metabolic stress. More importantly, activation of AMPK alters skeletal muscle SR function to an extent that is qualitatively similar to that caused by fatiguing activity. At present, it is not clear how AMPK activation causes changes in SR function. However, the present finding is consistent with the notion that metabolic stress caused by exercise, affects SR function. This, in turn, leads to force loss but reduces energy demand and protects the cell from ATP depletion during maximal contractile activity.en_US
dc.publisherVirginia Techen_US
dc.relation.haspartSEVThesis.pdfen_US
dc.rightsI hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Virginia Tech or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.en_US
dc.subjectexerciseen_US
dc.subjectAMP kinaseen_US
dc.subjectfatigueen_US
dc.subjectcalciumen_US
dc.titleThe Effect of AICAR Treatment on Sarcoplasmic Reticulum Function and Possible Links to Skeletal Muscle Fatigueen_US
dc.typeThesisen_US
dc.contributor.departmentHuman Nutrition, Foods, and Exerciseen_US
thesis.degree.nameMaster of Scienceen_US
thesis.degree.levelmastersen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
dc.contributor.committeechairWilliams, Jay H.en_US
dc.contributor.committeememberGrange, Robert W.en_US
dc.contributor.committeememberSpangenburg, Espenen_US
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-06042007-112857/en_US
dc.date.sdate2007-06-04en_US
dc.date.rdate2007-06-19
dc.date.adate2007-06-19en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record