Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Orchestra Framework: Protocol Design for Ad Hoc and Delay Tolerant Networks using Genetic Algorithms

    Thumbnail
    View/Open
    Naik_Apoorv_T_2011.pdf (1.869Mb)
    Downloads: 72
    Date
    2011-06-20
    Author
    Naik, Apoorv
    Metadata
    Show full item record
    Abstract
    Protocol designs targeted at a specific network scenario or performance metric appear promising on paper, but the complexity and cost of implementing and tuning a routing protocol from scratch presents a major bottleneck in the protocol design process. A unique framework called 'Orchestra` is proposed in the literature to support the testing and development of novel routing designs. The idea of the Orchestra framework is to create generic and reusable routing functional components which can be combined to create unique protocol designs customized for a specific performance metric or network setting. The first contribution of this thesis is the development of a generic, modular, scalable and extensible architecture of the Orchestra framework. Once the architecture and implementation of the framework is completed, the second contribution of this thesis is the development of functional components and strategies to design and implement routing protocols for delay tolerant networks (DTNs). DTNs are a special type of ad hoc network characterized by intermittent connectivity, long propagation delays and high loss rate. Thus, traditional ad hoc routing approaches cannot be used in DTNs, and special features must be developed for the Orchestra framework to support the design of DTN routing protocols. The component-based architecture of Orchestra can capture a variety of modules that can be used to assemble a routing protocol. However, manually assembling these components may result in suboptimal designs, because it is difficult to determine what the best combination is for a particular set of performance objectives and network characteristics. The third contribution of the thesis addresses this problem. A genetic algorithm based approach to automate the process of routing protocol design is developed and its performance is evaluated in the context of the Orchestra framework.
    URI
    http://hdl.handle.net/10919/43409
    Collections
    • Masters Theses [19617]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us