Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Microvascular oxygen transport: development of an optical triplicator

    Thumbnail
    View/Open
    LD5655.V855_1992.M682.pdf (41.20Mb)
    Downloads: 2
    Date
    1992
    Author
    Mott, Elizabeth A.
    Metadata
    Show full item record
    Abstract
    Microvascular oxygen transport has been studied using many experimental methods. The three wavelength photometric method of Pittman and Duling (6) was the basis for this project. An optical triplicator was introduced into the microscopy assembly. The triplicator’s function was to take the image seen in the eyepiece of the microscope, triplicate it, filter it at three known wavelengths and direct each image onto the active area of a video camera. When used in-vivo, the triplicator allowed for three simultaneous intensity measurements, one at each wavelength, to be made. This measurement removed any assumptions concerning the uniformity of the blood sample which was inherent in Pittman and Duling’s design. Measurements were performed in vivo on several hamster retractor muscles. The intensity information obtained was then used to calculate oxygen saturation at regions near an arterial bifurcation. Oxygen saturation values ranged from 42.99 ± 4.20 to 96.46 ± 4.46% depending upon the location along the vessel. It was also concluded that the oxygen saturation profile across the vessel was altered near a bifurcation. The oxygen saturation profile prior to and following a bifurcation appeared to be uniform. However, in the region of a bifurcation, the asymmetry introduced nonuniformities in the profile. This paper briefly discusses the theory behind the three wavelength photometric method, the development and fabrication of the optical triplicator and the measurement techniques used to obtain oxygen saturation profiles. It will be shown that the optical triplicator has the potential to advance the study of microvascular oxygen transport beyond previously unachievable levels.
    URI
    http://hdl.handle.net/10919/43773
    Collections
    • Masters Theses [19687]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us