Show simple item record

dc.contributor.authorBonaplata Revilla, Elenaen_US
dc.date.accessioned2014-03-14T21:40:42Z
dc.date.available2014-03-14T21:40:42Z
dc.date.issued1994-05-01en_US
dc.identifier.otheretd-07212009-040433en_US
dc.identifier.urihttp://hdl.handle.net/10919/43797
dc.description.abstractPoly(arylene ether phosphine oxide)s (PEPO) are a recently identified subset of an important macromolecular series which includes industrially important high performance thermoplastics, such as the polysulfones, e.g. UDEL@ and polyether ketones, e.g. PEEK@, PEKK@, etc. The PEPO materials show an elevated glass transition temperature, high thermal and oxidative stability, improved solubility, and increased flame resistance. It has been demonstrated that a variety of metal salts including metals such as iron, zinc, cobalt, and copper, can be complexed at a molecular level with the phosphoryl group in films of these polymers producing novel transparent metal/polymer "composites". A procedure for obtaining homogeneous films from solutions of the metal halide complexed polymers has been developed. FTIR experiments as well as Tl phosphorus (31 P) NMR measurements were conducted to demonstrate the existance of metal complexation in the solid state. The effect of the chemical composition of the chain, type of metal salt, molar concentration of the metal salt, and heating cycle were investigated and found to influence properties of the films such as solubility, glass transition temperature, thermal stability, and storage mexiulus. Additionally, linear poly(arylene ether phosphine oxide)s were reduced to different extents to the corresponding phosphine containing polymers. Properties such as intrinsic One of these phosphine polymers was subsequently used in the generation of a rhodium catalyst for the hydroformylation of octene-l. The utilization of polymer-supported catalysts has important advantages such as catalyst recovery and the ease of separation of the product. The catalyst activity of the polymeric rhodium complex was studied as a function of reaction time as well as ligand to rhodium ratio. For a phosphorus/rhodium ratio of two these heterogeneous catalysts suffer in tenns of reaction rate in relation to their homogeneous counterparts. However, at phosphorus/rhodium ratios of approximately eight the reaction is almost quantitative after three hours, and the selectivity is greatly improved over that of monomeric homogeneous catalysts for the same P/Rh ratio.en_US
dc.format.mediumBTDen_US
dc.publisherVirginia Techen_US
dc.relation.haspartLD5655.V855_1994.R485.pdfen_US
dc.subjectOrganometallic polymersen_US
dc.subject.lccLD5655.V855 1994.R485en_US
dc.titleComplexation of metal salts with phosphorus-containing poly(arylene ether)sen_US
dc.typeThesisen_US
dc.contributor.departmentChemistryen_US
dc.description.degreeMaster of Scienceen_US
thesis.degree.nameMaster of Scienceen_US
thesis.degree.levelmastersen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineChemistryen_US
dc.contributor.committeechairMcGrath, James E.en_US
dc.contributor.committeememberBrewer, Karen J.en_US
dc.contributor.committeememberMarand, Hervé L.en_US
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-07212009-040433/en_US
dc.date.sdate2009-07-21en_US
dc.date.rdate2009-07-21
dc.date.adate2009-07-21en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record