Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Two-dimensional modeling of in situ bioremediation using sequential electron acceptors

    Thumbnail
    View/Open
    LD5655.V855_1995.B738.pdf (4.364Mb)
    Downloads: 87
    Date
    1995-09-05
    Author
    Brauner, J. Steven
    Metadata
    Show full item record
    Abstract
    One of the most promising technologies in groundwater contaminant remediation is the active use of natural microbial activity to reduce aromatic hydrocarbons and other contaminants to simpler, non-toxic compounds. Biological treatment technologies which clean an aquifer without removing aquifer material fall into the broad category of in situ bioremediation, and have the potential to provide cost-effective remediation plans. Mathematical models used to simulate in situ bioremediation must deal with spatial variation in contaminant and electron acceptor concentration, microbial population, and media properties. Research has shown that the use of sequential electron acceptors significantly impacts biodegradation results. Aquifer conditions may switch between primary and secondary electron accepting conditions, further complicating the modeling process. This research examines the two-dimensional, sequential electron acceptor computer model SEAM2D, developed by Widdowson (1992), and extends the SEAM2D model by developing the equations and coding for the newly recognized solid phase, iron(Ill)-based contaminant reduction. Both a sensitivity investigation and field simulations are provided. The sensitivity investigation identifies which input parameters most significantly impact model results (i.e. changes in contaminant mass and concentration). The modeling simulations provide an illustration of model capabilities and documents procedures used in applying SEAM2D to a USGS study site in Laurel Bay, South Carolina. The Laurel Bay site and subsequent model simulations are unique in that the natural, sequential electron acceptor process of oxygen-iron(Ill) reduction is specifically monitored and modeled.
    URI
    http://hdl.handle.net/10919/43810
    Collections
    • Masters Theses [20950]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us