Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Impact response of interleaved composite materials

    Thumbnail
    View/Open
    LD5655.V855_1988.G353.pdf (2.922Mb)
    Downloads: 197
    Date
    1988-12-15
    Author
    Gandhe, Gajanan V.
    Metadata
    Show full item record
    Abstract
    The need for better impact resistant composites has resulted in the development of many toughened resin systems. A combination of a tougher resin system along with higher strength fibers increases the impact resistance of the composite. The use of an adhesive layer between two plies of the improved prepreg system has been found to considerably increase the impact resistance. This concept is known as "Interleafing." This investigation studies the response of the interleaf materials to instrumented drop weight impact as compared with the response of non-interleaved materials. Two non-destructive quality evaluation techniques, namely, ultrasonics and eddy currents, are used to qualitatively evaluate the damage developed in the specimens. Several different energy levels of damage are studied. The interleaved laminate had significantly better impact response than the non-interleaved laminate for the same impact energy. The onset of delamination was delayed by the use of the interleaf. Whereas damage could be detected at an impact energy as low as 1.75 ft-lb in the baseline laminate; the interleaved laminate did not show any ultrasonic C-scan indication up to an impact of 2.45 ft-lb. The increase of delamination with increasing impact energy was slower in the interleaved specimen. The eddy current method is not effective in detecting damage in the interleaved laminate because of the shielding effect of the interleaf. Compression Strength After Impact (CSAI) could not be used for the test laminates in this project, but the Tensile Strength After Impact test provided useful results. The tensile strength after impact of the interleaved specimen was between 20%-80% more than the baseline laminate up to impact energy of 10 ft-lb. The advantage of the interleaved specimen reduced at higher energy levels of impact.
    URI
    http://hdl.handle.net/10919/43859
    Collections
    • Masters Theses [20805]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us